左神算法-基础04-链表
哈希表的简单介绍
1)哈希表在使用层面上可以理解为一种集合结构
2)如果只有key,没有伴随数据value,可以使用HashSet结构(C++中叫UnOrderedSet)
3)如果既有key,又有伴随数据value,可以使用HashMap结构(C++中叫UnOrderedMap)
4)有无伴随数据,是HashMap和HashSet唯一的区别,底层的实际结构是一回事
5)使用哈希表增(put)、删(remove)、改(put)和查(get)的操作,可以认为时间复杂度为O(1),但是常数时间比较大
6)放入哈希表的东西,如果是基础类型,内部按值传递,内存占用就是这个东西的大小
7)放入哈希表的东西,如果不是基础类型,内部按引用传递,内存占用是这个东西内存地址的大小
有序表的简单介绍
1)有序表在使用层面上可以理解为一种集合结构
2)如果只有key,没有伴随数据value,可以使用TreeSet结构(C++中叫OrderedSet)
3)如果既有key,又有伴随数据value,可以使用TreeMap结构(C++中叫OrderedMap)
4)有无伴随数据,是TreeSet和TreeMap唯一的区别,底层的实际结构是一回事
5)有序表和哈希表的区别是,有序表把key按照顺序组织起来,而哈希表完全不组织
5)红黑树、AVL树、size-balance-tree和跳表等都属于有序表结构,只是底层具体实现不同
6)放入有序表的东西,如果是基础类型,内部按值传递,内存占用就是这个东西的大小
7)放入有序表的东西,如果不是基础类型,必须提供比较器,内部按引用传递,内存占用是这个东西内存地址的大小
8)不管是什么底层具体实现,只要是有序表,都有以下固定的基本功能和固定的时间复杂度
有序表的固定操作
1)void put(K key, V value):将一个(key,value)记录加入到表中,或者将key的记录更新成value。
2)V get(K key):根据给定的key,查询value并返回。
3)void remove(K key):移除key的记录。
4)boolean containsKey(K key):询问是否有关于key的记录。
5)K firstKey():返回所有键值的排序结果中,最左(最小)的那个。
6)K lastKey():返回所有键值的排序结果中,最右(最大)的那个。
7)K floorKey(K key):如果表中存入过key,返回key;否则返回所有键值的排序结果中, key的前一个。 返回<=key 的最大值
8)K ceilingKey(K key):如果表中存入过key,返回key;否则返回所有键值的排序结果中,key的后一个。 返回>=key的最小值
以上所有操作时间复杂度都是O(logN),N为有序表含有的记录数
public static class Node {
public int value;
public Node next;
public Node(int val) {
value = val;
}
}
public static class NodeComparator implements Comparator<Node> {
@Override
public int compare(Node o1, Node o2) {
return o1.value - o2.value;
}
}
public static void main(String[] args) {
Node nodeA = null;
Node nodeB = null;
Node nodeC = null;
// hashSet1的key是基础类型->int类型
HashSet<Integer> hashSet1 = new HashSet<>();
hashSet1.add(3);
System.out.println(hashSet1.contains(3));
hashSet1.remove(3);
System.out.println(hashSet1.contains(3));
System.out.println("========1=========");
// hashSet2的key是非基础类型->Node类型
nodeA = new Node(1);
nodeB = new Node(1);
HashSet<Node> hashSet2 = new HashSet<>();
hashSet2.add(nodeA);
System.out.println(hashSet2.contains(nodeA));
System.out.println(hashSet2.contains(nodeB));
hashSet2.remove(nodeA);
System.out.println(hashSet2.contains(nodeA));
System.out.println("========2=========");
// hashMap1的key是基础类型->String类型
HashMap<String, Integer> hashMap1 = new HashMap<>();
String str1 = "key";
String str2 = "key";
hashMap1.put(str1, 1);
System.out.println(hashMap1.containsKey(str1));
System.out.println(hashMap1.containsKey(str2));
System.out.println(hashMap1.get(str1));
System.out.println(hashMap1.get(str2));
hashMap1.put(str2, 2);
System.out.println(hashMap1.containsKey(str1));
System.out.println(hashMap1.containsKey(str2));
System.out.println(hashMap1.get(str1));
System.out.println(hashMap1.get(str2));
hashMap1.remove(str1);
System.out.println(hashMap1.containsKey(str1));
System.out.println(hashMap1.containsKey(str2));
System.out.println("========3=========");
// hashMap2的key是非基础类型->Node类型
nodeA = new Node(1);
nodeB = new Node(1);
HashMap<Node, String> hashMap2 = new HashMap<>();
hashMap2.put(nodeA, "A节点");
System.out.println(hashMap2.containsKey(nodeA));
System.out.println(hashMap2.containsKey(nodeB));
System.out.println(hashMap2.get(nodeA));
System.out.println(hashMap2.get(nodeB));
hashMap2.put(nodeB, "B节点");
System.out.println(hashMap2.containsKey(nodeA));
System.out.println(hashMap2.containsKey(nodeB));
System.out.println(hashMap2.get(nodeA));
System.out.println(hashMap2.get(nodeB));
System.out.println("========4=========");
// treeSet的key是非基础类型->Node类型
nodeA = new Node(5);
nodeB = new Node(3);
nodeC = new Node(7);
TreeSet<Node> treeSet = new TreeSet<>();
// 以下的代码会报错,因为没有提供Node类型的比较器
try {
treeSet.add(nodeA);
treeSet.add(nodeB);
treeSet.add(nodeC);
} catch (Exception e) {
System.out.println("错误信息:" + e.getMessage());
}
treeSet = new TreeSet<>(new NodeComparator());
// 以下的代码没问题,因为提供了Node类型的比较器
try {
treeSet.add(nodeA);
treeSet.add(nodeB);
treeSet.add(nodeC);
System.out.println("这次节点都加入了");
} catch (Exception e) {
System.out.println(e.getMessage());
}
System.out.println("========5=========");
// 展示有序表常用操作
TreeMap<Integer, String> treeMap1 = new TreeMap<>();
treeMap1.put(7, "我是7");
treeMap1.put(5, "我是5");
treeMap1.put(4, "我是4");
treeMap1.put(3, "我是3");
treeMap1.put(9, "我是9");
treeMap1.put(2, "我是2");
System.out.println(treeMap1.containsKey(5));
System.out.println(treeMap1.get(5));
//依据比较器进行排序
System.out.println(treeMap1.firstKey() + ", 我最小");
System.out.println(treeMap1.lastKey() + ", 我最大");
//floorKey ceilingKey
System.out.println(treeMap1.floorKey(8) + ", 在表中所有<=8的数中,我离8最近");
System.out.println(treeMap1.ceilingKey(8) + ", 在表中所有>=8的数中,我离8最近");
System.out.println(treeMap1.floorKey(7) + ", 在表中所有<=7的数中,我离7最近");
System.out.println(treeMap1.ceilingKey(7) + ", 在表中所有>=7的数中,我离7最近");
treeMap1.remove(5);
System.out.println(treeMap1.get(5) + ", 删了就没有了哦");
System.out.println("========6=========");
}
链表
单链表的节点结构
class Node<V>{ V value; Node next; }
由以上结构的节点依次连接起来所形成的链叫单链表结构。
双链表的节点结构
class Node<V>{ V value; Node next; Node last; }
由以上结构的节点依次连接起来所形成的链叫双链表结构。
单链表和双链表结构只需要给定一个头部节点head,就可以找到剩下的所有的节点。
反转单向和双向链表
【题目】 分别实现反转单向链表和反转双向链表的函数
【要求】 如果链表长度为N,时间复杂度要求为O(N),额外空间复杂度要求为
O(1)
//单向链表节点
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static Node myReverseList(Node head) {
Node p = null;
while(head != null) {
Node t = head.next;
head.next = p;
p = head;
head = t;
}
return p;
}
//双向链表节点
public static class DoubleNode {
public int value;
public DoubleNode last;
public DoubleNode next;
public DoubleNode(int data) {
this.value = data;
}
}
public static DoubleNode myReverseList(DoubleNode head) {
DoubleNode p = null;
DoubleNode newHead = null;
// while(head != null) {
// DoubleNode tmp = head.next;
// head.next = p;
// head.last = tmp;
// p = head;
// head = tmp;
// }
//
// return p;
while(head != null) {
DoubleNode t = head.next;
head.next = p;
p = head;
head = t;
}
newHead = p;
while(p != null) {
DoubleNode t = p.last;
p.last = head;
head = p;
p = t;
}
return newHead;
}
打印两个有序链表的公共部分
【题目】 给定两个有序链表的头指针head1和head2,打印两个链表的公共部分。
【要求】 如果两个链表的长度之和为N,时间复杂度要求为O(N),额外空间复
杂度要求为O(1)
public static class Node {
public int value;
public Node next;
public Node(int data) {
this.value = data;
}
}
public static void myPrintCommonPart(Node head1, Node head2) {
//有序链表,遍历,谁小谁往后走,
//相等输出,然后一起走
System.out.print("Common Part: ");
for (; head1 != null && head2 != null ; ) {
if (head1.value > head2.value) {
head2 = head2.next;
}else if (head1.value < head2.value){
head1 = head1.next;
}else {
System.out.print(head1.value+"\t");
head1 = head1.next;
head2 = head2.next;
}
}
System.out.println();
}
面试时链表解题的方法论
1)对于笔试,不用太在乎空间复杂度,一切为了时间复杂度
2)对于面试,时间复杂度依然放在第一位,但是一定要找到空间最省的方法
重要技巧:
1)额外数据结构记录(哈希表等)
2)快慢指针
判断一个链表是否为回文结构
【题目】给定一个单链表的头节点head,请判断该链表是否为回文结构。
【例子】1->2->1,返回true; 1->2->2->1,返回true;15->6->15,返回true; 1->2->3,返回false。
【例子】如果链表长度为N,时间复杂度达到O(N),额外空间复杂度达到O(1)。
public static boolean myIsPalindrome1(Node head) {
//存到栈中,再读出来
Stack<Node> nodes = new Stack<Node>();
Node p = head;
while(p != null) {
nodes.push(p);
p = p.next;
}
while(head.value == nodes.pop().value){
if (head.next == null)
return true;
head = head.next;
}
return false;
}
// need n extra space
public static boolean isPalindrome1(Node head) {
Stack<Node> stack = new Stack<Node>();
Node cur = head;
while (cur != null) {
stack.push(cur);
cur = cur.next;
}
while (head != null) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
public static boolean myIsPalindrome2(Node head) {
if (head == null || head.next == null) {
return true;
}
//把一半存到栈中,再遍历后一半与栈.pop 作比较
Stack<Node> nodes = new Stack<Node>();
Node p1 = head;
Node p2 = head;
while(p2.next != null && p2.next.next != null) {
p1 = p1.next;
p2 = p2.next.next;
}
while(head != p1.next){
nodes.push(head);
head = head.next;
}
if (p2.next != null) //当p2不是尾节点时,让p1后移一下,也就是总结点数是偶数的情况
p1 = p1.next;
//否则就不需要后移
while(p1 != null) {
if (p1.value != nodes.pop().value)
return false;
p1 = p1.next;
}
return true;
}
// need n/2 extra space
public static boolean isPalindrome2(Node head) {
if (head == null || head.next == null) {
return true;
}
Node right = head.next;
Node cur = head;
while (cur.next != null && cur.next.next != null) {
right = right.next;
cur = cur.next.next;
}
Stack<Node> stack = new Stack<Node>();
//把后一半存到栈结构中
while (right != null) {
stack.push(right);
right = right.next;
}
//用栈是否空作为条件,不需要分情况
while (!stack.isEmpty()) {
if (head.value != stack.pop().value) {
return false;
}
head = head.next;
}
return true;
}
public static boolean myIsPalindrome3(Node head) {
if (head == null || head.next == null) {
return true;
}
Node p1 = head;
Node p2 = head;
while(p2.next != null && p2.next.next != null) {
p1 = p1.next;
p2 = p2.next.next;
}
//p2到了为尾,p1到了中间
p2 = p1.next;
Node p3 = null;
while(p2 != null) {
Node t = null;
t = p2.next;
p2.next = p3;
p3 = p2;
p2 = t;
}
p2 = p3;
//p3 是后一段逆序的头节点
boolean isPalindrome = true;
while(p3!=null) {
if (p3.value != head.value) {
isPalindrome = false;
break;
}
p3 = p3.next;
head = head.next;
}
//要还原链表
p3 = null;
while(p2 != null) {
Node t = null;
t = p2.next;
p2.next = p3;
p3 = p2;
p2 = t;
}
//p3 后一段的头
p1.next = p3;
return isPalindrome;
}
// need O(1) extra space
public static boolean isPalindrome3(Node head) {
if (head == null || head.next == null) {
return true;
}
Node n1 = head;
Node n2 = head;
while (n2.next != null && n2.next.next != null) { // find mid node
n1 = n1.next; // n1 -> mid
n2 = n2.next.next; // n2 -> end
}
n2 = n1.next; // n2 -> right part first node
n1.next = null; // mid.next -> null
Node n3 = null;
while (n2 != null) { // right part convert
n3 = n2.next; // n3 -> save next node
n2.next = n1; // next of right node convert
n1 = n2; // n1 move
n2 = n3; // n2 move
}
n3 = n1; // n3 -> save last node
n2 = head;// n2 -> left first node
boolean res = true;
while (n1 != null && n2 != null) { // check palindrome
if (n1.value != n2.value) {
res = false;
break;
}
n1 = n1.next; // left to mid
n2 = n2.next; // right to mid
}
n1 = n3.next;
n3.next = null;
while (n1 != null) { // recover list
n2 = n1.next;
n1.next = n3;
n3 = n1;
n1 = n2;
}
return res;
}
将单向链表按某值划分成左边小、中间相等、右边大的形式
【题目】给定一个单链表的头节点head,节点的值类型是整型,再给定一个整数pivot。
实现一个调整链表的函数,将链表调整为左部分都是值小于pivot的节点,中间部分都是值等于pivot的节点,右部分都是值大于pivot的节点。
【进阶】在实现原问题功能的基础上增加如下的要求
【要求】调整后所有小于pivot的节点之间的相对顺序和调整前一样
【要求】调整后所有等于pivot的节点之间的相对顺序和调整前一样
【要求】调整后所有大于pivot的节点之间的相对顺序和调整前一样
【要求】时间复杂度请达到O(N),额外空间复杂度请达到O(1)。
public static Node listPartition2(Node head, int pivot) {
Node sH = null; // small head
Node sT = null; // small tail
Node eH = null; // equal head
Node eT = null; // equal tail
Node bH = null; // big head
Node bT = null; // big tail
Node next = null; // save next node
// every node distributed to three lists
while (head != null) {
next = head.next;
head.next = null;
if (head.value < pivot) {
if (sH == null) {
sH = head;
sT = head;
} else {
sT.next = head;
sT = head;
}
} else if (head.value == pivot) {
if (eH == null) {
eH = head;
eT = head;
} else {
eT.next = head;
eT = head;
}
} else {
if (bH == null) {
bH = head;
bT = head;
} else {
bT.next = head;
bT = head;
}
}
head = next;
}
// small and equal reconnect
if (sT != null) {
sT.next = eH;
eT = eT == null ? sT : eT;
}
// all reconnect
if (eT != null) {
eT.next = bH;
}
return sH != null ? sH : eH != null ? eH : bH;
}
复制含有随机指针节点的链表
【题目】一种特殊的单链表节点类描述如下
class Node { int value; Node next; Node rand; Node(int val) { value = val; } }
rand指针是单链表节点结构中新增的指针,rand可能指向链表中的任意一个节点,也可能指向null。
给定一个由Node节点类型组成的无环单链表的头节点 head,请实现一个函数完成这个链表的复制,并返回复制的新链表的头节点。
【要求】时间复杂度O(N),额外空间复杂度O(1)
//利用hashmap结构,将key 的对应关系复制到 value上面,返回get(head)就ok
public static Node myCopyListWithRand1(Node head) {
HashMap<Node, Node> map = new HashMap<Node, Node>();
Node p = head;
while (p != null){
map.put(p,new Node(p.value));
p = p.next;
}
p = head;
while (p != null) {
map.get(p).next = map.get(p.next);
map.get(p).rand = map.get(p.rand);
p = p.next;
}
return map.get(head);
}
//复制的节点跟在原链表节点的后面,串到一个链表上,将rand的关系对应到复制的节点上
//最后将链表分离开来
public static Node myCopyListWithRand2(Node head) {
if (head == null)
return null;
Node p = head;
Node t = null;
while (p != null) {
t = p.next;
p.next = new Node(p.value);
p.next.next = t;
p = t;
}
p = head;
t = p.next;
while (t != null) {
t.rand = p.rand == null ? null : p.rand.next;
if (t.next == null)
break;
p = p.next.next;
t = t.next.next;
}
p = head;
Node newHead = head.next;
while (p.next != null ) {
t = p.next;
p.next = t.next;
p = t;
}
return newHead;
}
两个单链表相交的一系列问题
【题目】给定两个可能有环也可能无环的单链表,头节点head1和head2。
请实现一个函数,如果两个链表相交,请返回相交的 第一个节点。如果不相交,返回null
【要求】如果两个链表长度之和为N,时间复杂度请达到O(N),额外空间复杂度请达到O(1)。
//分为都有环和都无环两种情况
public static Node myGetIntersectNode(Node head1, Node head2) {
if (head1 == null || head2 == null)
return null;
Node loop1 = myGetLoopNode(head1);
Node loop2 = myGetLoopNode(head2);
if (loop1 == null && loop2 == null) {
return myNoLoop(head1, head2);
}else if (loop1 != null && loop2 !=null){
return myBothLoop(head1, loop1, head2, loop2);
}
return null;
}
//找入环节点
public static Node myGetLoopNode(Node head) {
if (head == null || head.next == null || head.next.next == null)
return null;
Node slow = head;
Node fast = head.next;
while (fast != slow && fast != null) {
slow = slow.next;
fast = fast.next == null ? null : fast.next.next;
}
if (fast == null)
return null;
fast = null;
while (fast!=slow){
fast = fast == null ? head : fast.next;
slow = slow.next;
}
return fast;
}
//都无环的情况
public static Node myNoLoop(Node head1, Node head2) {
Node p1 = head1;
Node p2 = head2;
int s1 = 0;
int s2 = 0;
int ds = 0;
while(p1.next != null) {
p1 = p1.next;
s1++;
}
while(p2.next != null) {
p2 = p2.next;
s2++;
}
if (p1 != p2) // 尾节点不一样,直接返回null
return null;
ds = Math.abs(s1 - s2);
p1 = head1;
p2 = head2;
if (s1 >= s2){
while(ds > 0){
p1 = p1.next;
ds--;
}
}else {
while(ds > 0){
p2 = p2.next;
ds--;
}
}
while (p1 != p2){
p1 = p1.next;
p2 = p2.next;
}
return p1;
}
//都有环的情况
public static Node myBothLoop(Node head1, Node loop1, Node head2, Node loop2) {
if (loop1 == loop2) {
Node p1 = head1;
Node p2 = head2;
int s1 = 0;
int s2 = 0;
int ds = 0;
while (p1 != loop1) {
p1 = p1.next;
s1++;
}
while (p2 != loop1) {
p2 = p2.next;
s2++;
}
ds = Math.abs(s1 - s2);
p1 = head1;
p2 = head2;
if (s1 >= s2) {
while (ds > 0) {
p1 = p1.next;
ds--;
}
} else {
while (ds > 0) {
p2 = p2.next;
ds--;
}
}
while (p1 != p2) {
p1 = p1.next;
p2 = p2.next;
}
return p1;
}else {
Node p1 = loop1;
while (p1 != loop2){
p1 = p1.next;
if (p1 == loop1)
return null;
}
return loop1;
}
}