svm代码实现
支持向量机的优点有: 在高维空间里也非常有效 对于数据维度远高于数据样本量的情况也有效 在决策函数中使用训练集的子集(也称为支持向量),因此也是内存高效利用的。 通用性:可以为决策函数指定不同的核函数。已经提供了通用核函数,但也可以指定自定义核函数。 支持向量机的缺点包括: 如果特征数量远远大于样本数,则在选择核函数和正则化项时要避免过度拟合。 SVMs不直接提供概率估计, 这些计算使用昂贵的五倍交叉验证(见分数和概率)。 SVC,NuSVC和..
原创
2021-07-24 00:04:43 ·
805 阅读 ·
0 评论