数字图像
一、题型
填空(10分)
选择(20分)
判断(10分)
名词解释(10分)
问答(20分)
计算分析题(30分)
二、第一章 绪论
2.1、数字图像的定义
- 数字图像是物理图像的数字表示,是连续物体表面的的离散数字表示。
2.2、数字图像的四种类型
- 灰度级图像、二值图像、索引图像、真彩色RGB图像
2.3、量化和采样
- 采样:图像空间坐标的数字化
- 量化:图像函数值(灰度值)的数字化
2.4、图像的采样与数字图像的质量
- 空间分辨率低,图像的尺寸变小,会丢失掉一些信息,细节不明显。
2.5、图像的量化与数字图像的质量
- 灰度级越低
2.6、数字图像的表示
-
二维离散亮度函数——f(x,y)
- x,y说明图像像素的空间坐标
- 函数值 f 代表了在点(x,y)处像素的灰度值
-
二维矩阵——A[m,n]
- m , n说明图像的宽和高。
- 矩阵元素a(i,j)的值,表示图像在第 i 行,第 j 列的像素的灰度值;i,j表示几何位置
2.7、邻域
2.8、存储图像计算
作业
bit (位) Byte(字节)
1 Byte = 8 bit
1 KB = 1024 Byte
1 MB = 1024 KB
1 GB = 1024 MB
1 TB = 1024 GB
三、第二章 灰度变换与空间滤波
3.1、图像增强的方法
3.2、灰度变换
- 令f (x, y)表示输入图像,g(x, y)表示处理之后的输出图像;如邻域大小为像素本身,即输出图像 g(x, y)任意点(x, y)的灰度值仅依赖于输入图象f (x, y)在(x, y)像素点的灰度值,则T[]定义的操作被称为灰度级变换函数(又称灰度映射) 。
- 令 r和s分别表示输入图像f (x, y)和输出图像g(x, y)在任意点(x, y)的灰度级(值),灰度变换可表示为:g(x,y)= T[f(x,y)] → s=T®
- 灰度变换的关键:是根据要解决的图象增强问题,选择合适的灰度变换函数 T[r]。
根据灰度变换函数 T[r]选择方法的不同,灰度变换可分为:直方图处理方法和直接灰度变换
3.2.1直接灰度变换
根据问题,直接选择灰度变换函数s=T® ,实现图像增强。主要处理对比度、灰度动态范围等问题。
r和s分别是输入图像f (x,y)和输出图像g (x,y)在任意点(x,y)的灰度级。
常用的变换函数有:
(1)线性函数(正比、反比、分段线性函数)
(2)对数函数
(3)幂律函数(n次幂和n次方根函数)
(4)其它特殊非线性函数
(1)图像反转
3.2.2直方图处理
1、灰度直方图的基本概念
- 如果将图像中像素灰度级看成是一个随机变量,则其取值分布情况就反映了图像的统计特性,这一特性可用灰度直方图(Histogram)来描述。
- 灰度级范围为[0, L-1]的数字图象的灰度直方图是灰度级的离散函数: h(rk)=nk
- 式中**,rk 是第k级灰度值,nk是图像中灰度值为rk的像素的个数,k=0,1,…, L-1。**
- 由于rk的增量是1,直方图可表示为:p(k)= nk
即,图像中不同灰度级像素出现的次数 - 概率论提示:随机实验、样本空间、样本、时间及概率、随机变量
3.2.3直方图均衡化
1、概念
2、直方图均衡化实现方法
2、直方图均衡化练习
注:变换后的灰度级:看Sk与归一化灰度级数值哪个比较近就是哪一级
序号 | 运算 | 步骤与结果 | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 列出原始图像灰度级Sk | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 统计原始图像各灰度级像素nk | 790 | 1023 | 850 | 656 | 329 | 245 | 122 | 81 |
3 | 计算原始直方图 | 0.19 | 0.25 | 0.21 | 0.16 | 0.08 | 0.05 | 0.03 | 0.02 |
4 | 计算累积直方图 | 0.19 | 0.44 | 0.65 | 0.81 | 0.89 | 0.95 | 0.98 | 1.00 |
5 | 新灰度值 | 1 | 3 | 5 | 6 | 6 | 7 | 7 | 7 |
6 | 确定映射对应关系Sk→tk | 0→1 | 1→3 | 2→5 | 3,4→6 | 5,6,7→7 | |||
7 | 统计新图像各灰度级像素nk | 790 | 1023 | 850 | 985 | 448 | |||
8 | 计算新的直方图 | 0.19 | 0.25 | 0.24 | 0.21 | 0.11 |
3、图像的卷积运算
卷积是一种特殊的数学运算,采用内积的形式求解,通常用于提取图像的特征
3.3、空间域滤波
- 定义
- 图像的平滑、锐化都是利用掩模操作来完成的。通过掩模操作实现一种邻域运算,待处理像素点的结果由邻域的图像像素以及相应的与邻域有相同维数的子图像得到。这些子图像被称为滤波器、掩模、核、模板或窗口;
掩模运算的数学含义是卷积(或互相关)运算;
掩模子图像中的值是系数值,而不是灰度值;
3.3.1 基本原理
-
输出图像 g(x, y)任意像素(x, y)的灰度值为输入图像f (x, y )事先定义的(x, y)邻域内所有像素灰度值的某种函数,即:g(x, y)= T[f(x, y)]
-
例如:线性空间滤波的一般形式:
g ( x , y ) = ∑ ∑ w ( s , t ) f ( x + s , y + t ) g(x,y)=∑∑w(s,t)f(x+s,y+t) g(x,y)=∑∑w(s,t)f(x+s,y+t)
s=-a---->a t=-b---->b
(x,y)邻域为(2a+1)*(2b+1)的矩形,w(s,t)为滤波器摸板系数。
- 增强操作常利用所谓的模板运算来实现。
- 模板又称滤波器、核、掩模、窗口等,是一个小的二维阵列,
- 模板的系数值决定了增强处理的性质,如平滑、锐化等,这种增强方法又称空间域滤波。
3.3.2平滑空间滤波器
- 平滑空间滤波器的作用
- 模糊处理:去除图像中一些不重要的细节
- 减小噪声
- 平滑空间滤波器的分类
- 线性滤波器:均值滤波器
- 取滤波器邻域内像素的平均值,也称为均值滤波器
- 作用
- 减小图像灰度的“尖锐”变化,减小噪声
- 由于图像边缘是由图像灰度尖锐变化引起的,所以也存在边缘模糊的问题
- 非线性滤波器
- 基于滤波器所在图像区域中像素的排序,由排序结果决定的值代替中心像素的值。
- 分类
- 最大值滤波器:用像素领域内的最大值代替该像素
- 主要用途:寻找最亮点
- 中值滤波器:用像素领域内的中间值代替该像素
- 主要用途:去除噪声
- 最小值滤波器:用像素领域内的最小值代替该像素
- 主要用途:寻找最暗点
- 最大值滤波器:用像素领域内的最大值代替该像素
- 线性滤波器:均值滤波器
3.3.3锐化滤波器
- 锐化滤波器的主要用途
✓ 突出图像中的细节,增强被模糊了的细节
✓ 印刷中的细微层次强调。弥补扫描对图像的钝化
✓ 超声探测成像,分辨率低,边缘模糊,通过锐化来改善
✓ 图像识别中,分割前的边缘提取
✓ 锐化处理恢复过度钝化、暴光不足的图像
✓ 目标识别、定位
由于我们处理的是数字量,最大灰度级的变化是有限的,变换发生的最短距离是在两个相邻像素之间.
用差分定义一元函数
一阶微分:∂f/∂x=f(x+1)−f(x) ( Δf(x)——前向差分)
用差分定义一元函数的二阶微分:
∂2f/∂x2=f(x+1)+f(x−1)−2f(x)
-
锐化滤波器的分类
-
一阶微分滤波器-梯度算子
-
-
二阶微分滤波器-拉普拉斯算子
-
Sobel梯度算子
Roberts交叉梯度算子
边缘定位准,但是对噪声敏感。适用于边缘明显且噪声较少的图像分割。
Prewitt算子
- 对噪声有抑制作用,对边缘的定位不如Roberts算子。
拉普拉斯算子
四、第三章 频率域滤波
4.1背景知识
图像的空间域就是二维平面坐标系,它有两个正交的轴即x,y轴。
- 某点在空间域上的幅值就是该点处的灰度。
图像上某点处的灰度是该点在x,y方向上灰度的叠加。 - 这样,分别以x,y为横坐标,灰度值为纵坐标,得到两个函数。表示图像在x,y方向上的灰度值变化情况。
这两个函数都写成很多个不同振幅及频率的正弦函数的和。
- 通过傅里叶变换,灰度-x函数变换成了振幅-u函数,灰度-y函数变换成了振幅-v函数。
- 建立以u,v为正交轴的平面坐标系,各点的灰度值用该点在u,v方向上的振幅的和表示。这样就得到了频率图。
图像变换的目的
- 使图像处理问题简化;
- 有利于图像特征提取;
- 有助于从概念上增强对图像信息的理解
图像变换通常是一种二维正交变换
- 正交变换必须是可逆的;
- 正变换和反变换的算法不能太复杂;
- 正交变换的特点是在变换域中图像能量将集中分布在低频率成分上,边缘、线状信息反映在高频率成分上,有利于图像处理
因此正交变换广泛应用在图像增强、图像恢复、特征提取、图像压缩
4.2 傅里叶变换
从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数(正、余弦函数)来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域
1、为什么要在频率域研究图像?
- 可以利用频率成分和图像外表之间的对应关系。一些在空间域表述困难的增强任务,在频率域中变得非常普通
- 滤波在频率域更为直观,它可以解释空间域滤波的某些性质
- 给出一个问题,寻找某个滤波器解决该问题,频率域处理对于试验、迅速而全面地控制滤波器参数是一个理想工具
- 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现编码和形状分析等方面
2、图像的频率指什么?
- 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。
3、离散傅里叶变换
4、二维离散傅里叶变换显示
图像经傅里叶变换后,直流分流正比于图像的均值,高频分量则表明了图像中目标边缘的强度及方向。
图像经傅里叶变换后,能量不变,但分布有变化,使之集中到少数项上,实现压缩。
5、频域增强原理
6、低通(平滑)滤波器
-
使用低通滤波器对图像的傅里叶变换进行滤波,可以做到平滑处理。
-
理想:是指小于D0的频率可以完全不受影响地通过滤波器,而大于D0的频率则完全通不过。
-
D0:截断频率(非负整数)
D(u, v)是从点(u, v)到频率平面原点的距离,D(u, v) = (u2 +v2)1/2 -
n为阶数
7、高通(锐化)滤波器
使用高通滤波器对图像的傅里叶变换进行滤波,可以做到锐化处理。
五、第四章 图像的复原与重建
1、图像退化
图像的质量下降叫做退化。退化的形式有模糊、失真、有噪声等。
2、图像退化的原因
如传感器噪声、摄像机未聚焦、物体与摄像设备之间的相对移动、随机大气湍流、光学系统的相差、成像光源或射线的散射等;
3、图像复原的基本概念
- 利用退化现象的某种先验知识来重建或恢复被退化的图像。
- 复原技术就是建立退化模型,并采用相反的过程进行处理,以便恢复出原图像。
- 是一种改善图像质量的处理技术
— 消除或减轻在图像获取及传输过程中造成的图像品质下降即退化现象.
4、图像复原的过程
典型的图像复原方法是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用滤波等手段进行处理,使得复原后的图像符合一定的准则,达到改善图像质量的目的。
处理过程:
1、建立退化模型,针对引起图像退化的原因,以及降质过程某先验知识;
2、再针对降质过程采取相反的方法,恢复图像。
5、图像恢复和图像增强的异同
6、图像恢复的本质
图像复原可以看作图像退化的逆过程,是将图像退化的过程加以估计,建立退化的数学模型后,补偿退化过程造成的失真。
在图像退化确知的情况下,图像退化的逆过程是有可能进行的,这属于反问题求解。
图像恢复处理的关键问题在于建立退化模型
7、图像恢复存在的困难
- 实际情况经常是退化过程并不知晓,这种复原属于盲复原。
- 由于图像模糊的同时,噪声和干扰也会同时存在,这也为复原带来了困难和不确定性。
8、图像复原的方法
经典的图像复原方法:
- 逆滤波(Inverse filtering)
- 维纳滤波(Wiener filter)
六、第五章 彩色图像处理
1、彩色基础
-
人眼的吸收特性:
- 人眼的锥状细胞是负责彩色视觉的传感器,人眼的锥状细胞可分为三个主要的感觉类别。
- 大约65%的锥状细胞对红光敏感,33%对绿光敏感,只有2%对蓝光敏感。
- 由于人眼的这些吸收特性,被看到的彩色是所谓的原色红(R,red)、绿(G,green)和蓝(B,blue)的各种组合。
-
原色相加可产生二次色。
例如:
红色+蓝色=深红色(M,magenta),
绿色+蓝色=青色(C,cyan),
红色+绿色=黄色(Y,yellow)。 -
以一定的比例混合光的三种原色或者以一种二次色与其相反的原色相混合可以产生白色,即:红色+绿色+蓝色=白色。
-
颜色常用三种基本特性
- **色调:**是光波混合中与主波长有关的属性,色调表示观察者接收的主要颜色。这样,当我们说一个物体是红色、橘黄色、黄色时,是指它的色调。
- 饱和度:与一定色调的纯度有关,纯光谱色是完全饱和的,随着白光的加入饱和度逐渐减少。
- **亮度:**如果无彩色就只有亮度一个维量的变化,表达的时强度。
-
色调和饱和度一起称为彩色,因此,颜色用亮度和彩色表征
2、彩色模型
-
HSI模型在图像处理和识别中广泛采用
主要基于两个重要的事实:- 其一 I分量与图像的彩色信息无关;
- 其二 H和S分量与人感受颜色的方式是紧密相连的。
-
从RGB到HSI的变换是一个非线性变换。
3、全彩色处理
1、分类
- 全彩色图像处理研究分为两大类。
- 第一类: 分别处理每一分量图像,然后,从分别处理过的分量图像形成合成彩色图像。
- 第二类: 直接对彩色像素进行处理。
2、全彩色图像处理基础
3、全彩色图像处理
七、第六章 图像压缩
1、图像数据压缩的重要性
2、单位换算
1 Byte = 8 bit
1 KB = 1024 Byte
1 MB =1024 KB
1 GB = 1024 MB
1 TB = 1024 GB
3、三种基本的数据冗余
- 编码冗余:如果一个图像的灰度级编码,使用了多于实际需要的编码符号,就称该图像包含了编码冗余
- 空间和时间冗余
- 心理视觉冗余(不相关信息): 人眼感觉到的图像区域亮度不仅取决于该区域的反射光,例如根据马赫带效应,在灰度值为常数的区域也能感觉到灰度值的变化。 这是由于眼睛对所有视觉信息感受的灵敏度不同。在正常视觉处理过程中各种信息的相对重要程度不同。 有些信息在通常的视觉过程中与另外一些信息相比并不那么重要,这些信息被认为是心理视觉冗余的,去除这些信息并不会明显降低图像质量
心里视觉压缩:
- 由于消除心理视觉冗余数据会导致一定量信息的丢失,所以这一过程通常称为量化
- 心理视觉冗余压缩是不可恢复的,它表示从一个范围很宽的输入集合到一个有限个输出值的集合的映射,这种映射是不可逆的,所以结果导致了数据的有损压缩。
4、图像压缩的方法
消除冗余数据,从数学角度看,将原始图像转化为从统计角度看尽可能不相关的数据集
一般分为两类:
-
无损压缩:在压缩和解压缩过程中没有信息损失
-
有损压缩:能取得较高的压缩率,但压缩后不能通过解压缩恢复原状
-
其它:如根据需要,即可进行无损,也可进行有损压缩的技术;准无损技术
图像压缩的理论基础:
- 信息论
- 图像处理的概念和技术
压缩方法:
- 预测编码方法(对应空域方法)
- 变换编码方法(对应频域方法)
5、图像压缩编码的理论基础
1、信息理论
(一)信源空间概述
-
信息:事物运动状态或存在方式的不确定性的描述;
-
信源空间:随机符号及其出现概率的空间;
-
信源的分类:
- 连续信源—离散信源—混合信源;
- 无记忆信源—有记忆信源(相关信源)—有限长度记忆信源(Markov信源)
(二)信息的度量
1、信息公理
- 信息由不确定性程度进行度量。 确定事件的信息量为零。
- 不确定性程度越高信息量越大;
- 相互独立性与信息量可加性;
独立事件的联合信息等于两个独立事件的信息总和。
满足上述公理的函数为:I(a)=−logP( a)
2、离散无记忆信源(DNMS)的信息量度量:
(1)信源符号 的自信息量定义为:I(a_i)=−logP(a_i)
- (a)、非负性;
- (b)、信息量的单位:
- 底为2时——单位为:比特(bit)
底为e时——单位为:奈特(Nat)
底为10时——单位为:哈特
- 底为2时——单位为:比特(bit)
(2)、信源平均自信息量(信息熵)
- 离散无记忆信源A的平均自信息量(信息熵)定义为:
3、平均码字长
-
借助熵的概念可以定义量度任何特定码的性能的准则,即平均码字长度。
-
其中βi为灰度级di所对应的码字长度。单位也是比特/字符。
4、压缩比
压缩比是衡量数据压缩程度的指标之一。目前常用的压缩比定义为
- 其中LB为源代码长度,Ld为压缩后代码长度,Pr为压缩比。
- 压缩比的物理意义是被压缩掉的数据占据源数据的百分比。当压缩比Pr接近100%时压缩效果最理想。
6、无损压缩编码
1、行程编码
2、霍夫曼编码
八、第七章 图像分割
1、概念
-
分割的目的:将图像划分为不同区域
-
三大类方法
- 根据区域间灰度不连续搜寻区域之间的边 界,在间断检测、边缘连接和边界检测介绍
- 以像素性质的分布进行阈值处理,在阈值处理介绍
- 直接搜寻区域进行分割,在基于区域的分割中介绍
-
定义:
- 按照一定的规则将一幅图像分成各具特性的区域,并提取出感兴趣目标,相应的技术和过程称为图像分割。
2、分割基本策略
-
基于灰度值的两个基本策略:
- 不连续性——区域之间(边界分割法、边缘连接分割法等)
- 相似性——区域内部(阈值分割法、面向区域的分割、数学形态学分割等)
-
根据图像像素灰度值的不连续性
- 先找到点、线(宽度为1)、边(不定宽度)
- 再确定区域
-
根据图像像素灰度值的相似性
- 通过选择阈值,找到灰度值相似的区域
- 区域的外轮廓就是对象的边
3、图像分割的方法
1、间断检测
- 点的检测
- 点的检测——算法描述
设定阈值 T,如T = 32、64、128等,并计算高通滤波值R
如果R值等于0,说明当前检测点与的灰度值与周围点的相同
当R的值足够大时,说明该点的值与周围的点非常不同,是孤立点。通过阈值T来判断
|R| > T 检测到一个孤立点
- 点的检测——算法描述
- 线的检测
- 线的检测——算法描述
依次计算4个方向的典型检测模板,得到Ri i=1,2,3,4
如 |Ri| > |Rj| 对于所有的j = i,那么这个点被称为在方向上更接近模板i 所代表的线
- 线的检测——算法描述
- 边的检测
- 一阶微分:用梯度算子来计算
- 特点:对于亮的边,边的变化起点是正的,结束是负的。对于暗边,结论相反。常数部分为零。
用途:用于检测图像中边的存在
- 特点:对于亮的边,边的变化起点是正的,结束是负的。对于暗边,结论相反。常数部分为零。
- 二阶微分:通过拉普拉斯来计算
- 特点:二阶微分在亮的一边是正的,在暗的一边是负的。常数部分为零。
- 一阶微分:用梯度算子来计算
寻找间断的一般方法:模板检测
边界的定义:
- 是两个具有相对不同灰度值特性的区域的边界线
- 适用于:
- 假定问题中的区域是非常类似的,两个区域之间的过渡,仅仅根据灰度的不连续性便可确定
- 不适用于:
- 当假定不成立时,阈值分割技术一般来说比边缘检测更加实用
2、边缘连接和边界检测
- 边缘连接的意义——边检测算法的后处理
- 由于噪音的原因,边界的特征很少能够被完整地描述,在亮度不一致的地方会中断
- 因此典型的边检测算法后面总要跟随着连接过程和其它边界检测过程,用来归整边像素,成为有意义的边
- 连接处理的时机和目的:
时机:对做过边界检测的图像进行
目的:连接间断的边 - 局部处理法
- Hough变换
3、阈值处理
- 阈值分割法
通过交互方式得到阈值
通过直方图得到阈值
通过边界特性选择阈值
简单全局阈值分割
分割连通区域
基于多个变量的阈值
自适应阈值分割(OTSU 算法)
第 i 级像素 ni个
概率为 Pi=ni/N
3、计算直方图的零阶w[i]和一级距u[i]
对一级矩作以下处理:
九、第七章-图像分割形态学图像处理
1、二值形态学基本运算
1、膨胀
2、腐蚀
3、开和闭运算
2、形态学算法用于灰阶图像处理
1、灰度膨胀
2、灰度腐蚀
3、灰度开和闭运算
十、第八章 表示与描述
1、概念
-
图像分割结果是得到了区域内像素集合,或位于区域边界上的像素集合。
-
把图像分割后,为了进一步的识别等处理,分割后的图像一般要进行表示和描述。
-
图像分割结果是得到了区域内的像素集合,或位于区域边界上的像素集合,这两个集合是互补的
表示
- 与分割类似,图像中的区域可用其内部(如组成区域的像素集合)表示,也可用其外部(如组成区域边界的像素集合)表示
- 一般来说,如果关心的是区域的反射性质,如灰度、颜色、纹理等,常用内部表示法;如果关心的是区域形状,则选用外部表示法
- 表示是直接具体地表示目标,好的表示方法应具有节省存储空间、易于特征计算等优点
描述
- 描述是较抽象地表示目标。好的描述应在尽可能区
别不同目标的基础上对目标的尺度、平移、旋转等不
敏感,这样的描述比较通用 - 描述可分为对边界的描述和对区域的描述。此外,
边界和边界或区域和区域之间的关系也常需要进行描述 - 表示和描述是密切联系的。表示的方法对描述很重
要,因为它限定了描述的精确性;而通过对目标的描
述,各种表示方法才有实际意义
表示和描述的区别
- 表示侧重于数据结构
- 而描述侧重于区域特性以及不同区域间的联系和差别
2、表示方法
1、链码