--cfg
参数和 --weights
参数在 YOLOv5 训练命令中扮演着互补但不同的角色:
-
--cfg
参数 指定的是模型配置文件的路径,这个文件(如yolov5s_chv.yaml
)定义了模型的架构,包括但不限于模型层的数量、类型、尺寸以及其他模型结构相关的配置。这个配置文件决定了模型的结构框架,即模型应该如何被构建。 -
--weights
参数 指定的是模型训练开始时使用的权重文件的路径,这个文件(如yoloves.pt
)包含了模型各层的参数值。这些权重可以是随机初始化的,也可以是通过在另一个(通常是相似的)数据集上预训练得到的。使用预训练权重可以帮助模型在新的数据集上更快地收敛,并可能提高最终模型的准确率。这是一种迁移学习的方法,它利用了在一个任务上学到的知识来帮助解决另一个相关的任务。
简单来说,--cfg
定义了“模型长什么样”(即模型的结构),而 --weights
提供了“模型开始训练时的知识基础”(即模型参数的初始值)。这两个参数共同决定了训练开始时模型的状态,包括它的结构和参数。