21字母矩阵

  1. 对于一个字母矩阵,我们称矩阵中的一个三升序列是指在矩阵中找到三个字母,它们在
    同一行,同一列,或者在同一 45 度的斜线上,这三个字母从左向右看、或者从上向下看是
    递增的。
    例如,如下矩阵中
    YQPD
    BKEZ
    AFYV
    有 BKZ、BEZ、AFY、AFV、AKP、DEF 等 6 个三升序列。注意当三个字母是从左下到右上排
    列时,从左向右看和从上向下看是不同的顺序。
    对于下面的 30 行 50 列的矩阵,请问总共有多少个三升序列?
    VLPWJVVNNZSWFGHSFRBCOIJTPYNEURPIGKQGPSXUGNELGRVZAG
    SDLLOVGRTWEYZKKXNKIRWGZWXWRHKXFASATDWZAPZRNHTNNGQF
    ZGUGXVQDQAEAHOQEADMWWXFBXECKAVIGPTKTTQFWSWPKRPSMGA
    BDGMGYHAOPPRRHKYZCMFZEDELCALTBSWNTAODXYVHQNDASUFRL
    YVYWQZUTEPFSFXLTZBMBQETXGXFUEBHGMJKBPNIHMYOELYZIKH
    ZYZHSLTCGNANNXTUJGBYKUOJMGOGRDPKEUGVHNZJZHDUNRERBU
    XFPTZKTPVQPJEMBHNTUBSMIYEGXNWQSBZMHMDRZZMJPZQTCWLR
    ZNXOKBITTPSHEXWHZXFLWEMPZTBVNKNYSHCIQRIKQHFRAYWOPG
    MHJKFYYBQSDPOVJICWWGGCOZSBGLSOXOFDAADZYEOBKDDTMQPA
    VIDPIGELBYMEVQLASLQRUKMXSEWGHRSFVXOMHSJWWXHIBCGVIF
    GWRFRFLHAMYWYZOIQODBIHHRIIMWJWJGYPFAHZZWJKRGOISUJC
    EKQKKPNEYCBWOQHTYFHHQZRLFNDOVXTWASSQWXKBIVTKTUIASK
    PEKNJFIVBKOZUEPPHIWLUBFUDWPIDRJKAZVJKPBRHCRMGNMFWW
    CGZAXHXPDELTACGUWBXWNNZNDQYYCIQRJCULIEBQBLLMJEUSZP
    RWHHQMBIJWTQPUFNAESPZHAQARNIDUCRYQAZMNVRVZUJOZUDGS
    PFGAYBDEECHUXFUZIKAXYDFWJNSAOPJYWUIEJSCORRBVQHCHMR
    JNVIPVEMQSHCCAXMWEFSYIGFPIXNIDXOTXTNBCHSHUZGKXFECL
    YZBAIIOTWLREPZISBGJLQDALKZUKEQMKLDIPXJEPENEIPWFDLP
    HBQKWJFLSEXVILKYPNSWUZLDCRTAYUUPEITQJEITZRQMMAQNLN
    DQDJGOWMBFKAIGWEAJOISPFPLULIWVVALLIIHBGEZLGRHRCKGF
    LXYPCVPNUKSWCCGXEYTEBAWRLWDWNHHNNNWQNIIBUCGUJYMRYW
    CZDKISKUSBPFHVGSAVJBDMNPSDKFRXVVPLVAQUGVUJEXSZFGFQ
    IYIJGISUANRAXTGQLAVFMQTICKQAHLEBGHAVOVVPEXIMLFWIYI
    ZIIFSOPCMAWCBPKWZBUQPQLGSNIBFADUUJJHPAIUVVNWNWKDZB
    HGTEEIISFGIUEUOWXVTPJDVACYQYFQUCXOXOSSMXLZDQESHXKP
    FEBZHJAGIFGXSMRDKGONGELOALLSYDVILRWAPXXBPOOSWZNEAS
    VJGMAOFLGYIFLJTEKDNIWHJAABCASFMAKIENSYIZZSLRSUIPCJ
    BMQGMPDRCPGWKTPLOTAINXZAAJWCPUJHPOUYWNWHZAKCDMZDSR
    RRARTVHZYYCEDXJQNQAINQVDJCZCZLCQWQQIKUYMYMOVMNCBVY
    ABTCRRUXVGYLZILFLOFYVWFFBZNFWDZOADRDCLIRFKBFBHMAXX
    思路:对于该题目要求三升序列那么就是统计所有的三升序列包括相同的序列,那么就采用暴力破解。根据题目的要求三升序列的方向可以是左右方向(0,1),上下方向(1,0),右上到左下(1,-1),左下到右上(-1,1),左上到右下(1,1)五个方向。对以某一个元素为首的三升序列,通过遍历以该元素为首的五个方向的序列即可求得。具体的做法是选取某一元素,然后遍历该元素以后的元素找到第1个比该元素大的元素,然后以这个元素为首遍历其后面的元素,只要有大于这个元素的则计数器加一,直到序列的结尾,然后再返回找到第i个比所选元素大的元素遍历其后面的元素。最后通过选择所有的元素即可完成所有的三升序列计数。(注意序列是用文件输入的)
#include <iostream>
#include <fstream>
using namespace std;
long long n = 0;
char s[30][50];
int d[][2] = {{0, 1}, {1, 0}, {1, -1}, {-1, 1}, {1, 1}};
int X = 30, Y = 50;
void in()
{
	ifstream  afile;
	afile.open("21.txt", ios::out | ios::in );
	for(int i=0;i<30;i++)
		for(int j=0;j<50;j++)
			afile>>s[i][j];
}
bool check(int x, int y) {
	return x >= 0 && x < X && y >= 0 && y <Y;
}
void solve(int x, int y) {
	for (int i = 0; i < 5; i++) {
		int dx = d[i][0];
		int dy = d[i][1];
		int x1 = x + dx, y1 = y + dy;
		for (; check(x1, y1); x1 += dx, y1 += dy) {
			if (s[x][y] >= s[x1][y1]) 
				continue;  
			int x2 = x1 + dx, y2 = y1 + dy;
			for (; check(x2, y2); x2 += dx, y2 += dy)
				if (s[x2][y2] > s[x1][y1])
					n++;
		}
	}
}
int main() {
	in();
	for (int i = 0; i <X; i++)
	{
		for (int j= 0; j <Y; j++)
			cout<< s[i][j];
		cout<<endl;
	}
	for (int i = 0; i <X; i++)
		for (int j = 0; j <Y; j++)
			solve(i, j);
	cout << n << endl;
}

在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值