深度优先查找和广度优先查找

深度优先查找和广度优先查找

在人工智能和运筹学的领域中求解与图有关的许多应用中,这两个算法被
证明是非常有用的。并且,如需高效地研究图的基本性质,例如图的连通性以及图是否存
在环,这些算法也是必不可少的。

深度优先查找

深度优先查找可以从任意顶点开始访问图的项点,然后把该顶点标记为已访问。在每次迭代的时候,该算法紧接着处理与当前顶点邻接的未访问顶点。(如果有若干个这样的顶点,可以任意选择一个顶点。但在实际应用中,选择哪一个邻接的未访问候选顶点主要是由表示图的数据结构决定的。在我们的例子中,我们总是根据顶点的字母顺序来选择顶点。)
这个过程一直持续,直到遇到一个终点——该顶点的所有邻接顶点都已被访问过。在该终点上,该算法沿着来路后退一条边,并试着继续从那里访问未访问的顶点。在后退到起始顶点,并且起始顶点也是一个终点时,该算法最终停了下来。这样,起始顶点所在的连通分量的所有顶点都被访问过了。如果未访问过的顶点仍然存在,该算法必须从其中任一顶点开始,重复上述过程。

分解步骤

  1. 任选一顶点进行访问,访问后标记该顶点为已访问,进入步骤2
  2. 紧接着处理与当前顶点邻接的未访问顶点(如果有多个,任选一个),访问后标记该顶点为已访问,接下来:
    如果当前顶点所有邻接顶点均被访问,进入步骤3,否则进入步骤2
  3. 沿着来路后退一条边,并试着继续从那里访问未访问的顶点
    如果当前顶点所有邻接顶点均被访问,进入步骤3,否则进入步骤2
  4. 最后将回退到最初选定的点。如果图中没有离散的顶点,即每一个顶点至少有一条边,那么查找结束。否则,从所有未被访问的任选一个,进行访问并标记,之后进入步骤2。直至所有顶点均被访问后,查找结束

深度优先查找森林

在深度优先查找遍历的时候构造一个所谓的深度优先查找森林(depth-first search forest)也是非常有用的。

  • 遍历的初始顶点可以作为这样一个森林中第一棵树的根
  • 无论何时,如果第一次遇到一个新的未访问顶点,它是从哪个顶点被访问到的,就把它附加为哪个顶点的子女。连接这样两个顶点的边称为树向边,因为所有这种边的集合构成了一个森林。
  • 该算法也可能会遇到一条指向已访问顶点的边,并且这个顶点不是它的直接前趋(即它在树中的父母),我们把这种边称为回边(back edge),因为这条边在一个深度优先查找森林中,把一个顶点和它的非父母祖先连在了一起
  • 如果从图中移走一个节点和所有它附带的边之后,图被分为若干个不相交的部分,我们说这样的节点是图的关节点

伪代码

DFS(G)
	//实现给定图的深度优先查找遍历
	//输入:图G=<V,E>
	//输出:图G的顶点,按照被DFS第一次访问到的先后次序,用连续的整数标记将V中的每个顶点标记为0,表示还”未访问“
	count <- 0
	for each vertex v in V do
		if v is marked with 0
			dfs(v)
	
dfs(v)
	//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值
	//根据遇到它们的先后次序,给它们附上相应的值
	count <- count+1;mark v with count
	for each vertex in V adjacent to do
		if w is marked with 0
			dfs(w)

Java代码实现

package com.算法;

import java.util.LinkedList;
import java.util.List;

/**
 * @Author Lanh
 **/
public class DFSDemo {
    public static void main(String[] args) {
        List<Vertex> Graph = new LinkedList<>();
        Vertex A = new Vertex('A',new LinkedList<>());
        Vertex B = new Vertex('B',new LinkedList<>());
        Vertex C = new Vertex('C',new LinkedList<>());
        Vertex D = new Vertex('D',new LinkedList<>());
        Graph.add(A);Graph.add(B);Graph.add(C);Graph.add(D);

        //添加边
        A.list.add(B);
        A.list.add(C);
        B.list.add(D);
        C.list.add(B);
        C.list.add(D);

        DFS(Graph);
        Graph.forEach(V -> {
            System.out.println(V.mark+":"+V.v);
        });
    }

    static int count = 0;

    public static void DFS(List<Vertex> Graph){
        Graph.forEach(V -> {
            if (V.mark==0) dfs(V);
        });
    }

    private static void dfs(Vertex vertex){
        count++;
        vertex.mark = count;
        if (vertex.list != null && vertex.list.size() >0){
            vertex.list.forEach(V -> {
                if (V.mark==0) dfs(V);
            });
        }
    }

    static class Vertex{
        char v;
        List<Vertex> list = null;
        int mark = 0;

        public Vertex(char v,List<Vertex> list){
            this.v = v;
            this.list = list;
        }
    }
}


测试用例:

在这里插入图片描述

结果如下:
在这里插入图片描述

广度优先查找

如果说深度优先查找遍历表现出来的是一种勇气(该算法尽可能地离“家”远些),广度优先查找遍历表现出来的则是一种谨慎。它按照一种同心圆的方式,首先访问所有和初始顶点邻接的顶点,然后是离它两条边的所有未访问顶点,以此类推,直到所有与初始顶点同在一个连通分量中的顶点都访问过了为止。如果仍然存在未被访问的顶点,该算法必须从图的其他连通分量中的任意顶点重新开始。
使用队列(注意它和深度优先查找的区别!)来跟踪广度优先查找的操作是比较方便的。该队列先从遍历的初始顶点开始,将该顶点标记为已访问。在每次迭代的时候,该算法找出所有和队头顶点邻接的未访问顶点,把它们标记为已访问,再把它们入队。然后,将队头顶点从队列中移去。

广度优先查找森林

  • 遍历的初始顶点可以作为这样一个森林中第一棵树的根。
  • 无论何时,只要第一次遇到一个新的未访问顶点,它是从哪个顶点被访问到的,就把它附加为哪个顶点的子女。连接这样两个顶点的边称为树向边
  • 如果一条边指向的是一个曾经访问过的顶点,并且这个顶点不是它的直接前趋(即它在树中的父母),这种边被称为交叉边

伪代码

BFS(G)
	//实现给定图的广度优先查找遍历
	//输入:图G=<V,E>
	//输出:图G的顶点,按照被BFS遍历访问到的先后次序,用连续的整数标记将V中的每个顶点标记为0,表示还”未访问“
	count <- 0
	for each vertex v in V do
		if v is marked with 0
			bfs(v)
	
bfs(v)
	//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值
	//根据遇到它们的先后次序,给它们附上相应的值
	count <- count+1;mark v with count;initalize a queue with v
	while the queue is not empty do
		for each vertex in V adjacent to do
			if w is marked with 0
				count++;mark w with count
				add w to the queue
		remove the front vertex from the queue

Java代码实现

package com.算法;

import java.util.LinkedList;
import java.util.List;
import java.util.Queue;

/**
 * @Author Lanh
 **/
public class BFSDemo {
    public static void main(String[] args) {
        List<Vertex> Graph = new LinkedList<>();
        Vertex A = new Vertex('A',new LinkedList<>());
        Vertex B = new Vertex('B',new LinkedList<>());
        Vertex C = new Vertex('C',new LinkedList<>());
        Vertex D = new Vertex('D',new LinkedList<>());
        Graph.add(A);Graph.add(B);Graph.add(C);Graph.add(D);

        //添加边
        A.list.add(B);
        A.list.add(C);
        B.list.add(D);
        C.list.add(B);
        C.list.add(D);

        BFS(Graph);
        Graph.forEach(V -> {
            System.out.println(V.mark+":"+V.v);
        });
    }

    static int count = 0;

    public static void BFS(List<Vertex> Graph){
        Graph.forEach(V -> {
            if (V.mark==0) bfs(V);
        });
    }

    private static void bfs(Vertex vertex) {
        count++;
        vertex.mark = count;
        Queue<Vertex> queue = new LinkedList<>();
        queue.offer(vertex);
        while (!queue.isEmpty()){
            vertex = queue.poll();
            if (vertex.list!=null && vertex.list.size() > 0){
                vertex.list.forEach(v -> {
                    if (v.mark==0){
                        count++;
                        v.mark = count;
                        queue.offer(v);
                    }
                });
            }
        }
    }

    static class Vertex{
        char v;
        List<Vertex> list = null;
        int mark = 0;

        public Vertex(char v,List<Vertex> list){
            this.v = v;
            this.list = list;
        }
    }
}

测试用例:

在这里插入图片描述

结果如下:
在这里插入图片描述

深度优先查找(DFS)和广度优先查找(BFS)的主要性质在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绿豆蛙给生活加点甜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值