小明先把硬币摆成了一个 n 行 m 列的矩阵。
随后,小明对每一个硬币分别进行一次 Q 操作。
对第x行第y列的硬币进行 Q 操作的定义:将所有第 ix 行,第 jy 列的硬币进行翻转。
其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。
当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上。
小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。
聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。
输入
输入数据包含一行,两个正整数 n m,含义见题目描述。
数据规模和约定
对于100%的数据,n、m < = 10^1000(10的1000次方)。
输出
输出一个正整数,表示最开始有多少枚硬币是反面朝上的。
样例输入
2 3
样例输出
1
这个数据规模一看就不能用模拟,可是也一时想不起其它方法。
对所有硬币都进行一次Q操作,对于一个硬币如果经过这次所有操作后从正面变成了反面,那么一定是奇数次翻面,那么我们就要看看经过所有操作后一个硬币翻了多少次面。一个硬币会翻面的条件是什么呢?要看懂这一句话“对第x行第y列的硬币进行 Q 操作的定义:将所有第 ix 行,第 jy 列的硬币进行翻转。”也就是与当前硬币的行数和列数呈倍数关系的位置会翻面,行和列的倍数不必相同。
假设硬币(x,y),它会翻几次面?(取决于它是几个数的倍数,可以转化为求有几个因数)取决与它的行和列的因子个数,假设行有因子3个,列有因子3个,那么它会被翻33=9次。(倍数关系转成因子关系)
假设硬币(9,9),它的因子有1,3,9;(1,1)(1,3)(1,9)(3,1)(3,3)(3,9)(9,1)(9,3)(9,9)。当以上硬币进行Q操作时,都会使(9,9)翻面。
所以理一下,我们要求有多少个硬币是反面,就是求有多少个硬币进行了奇数次Q操作,也就是求有多少个位置行列因子数乘积是奇数。
接下来的问题就是求一个数的因子数,其实我们只是想知道因子数是奇数还是偶数,不用知道具体值,而一个数的因子一般是xy=z的形式,一般是成对出现的,当出现奇数时,说明x=y,也就是一个数的因子个数是奇数个,那么这个数是一个平方数,那么现在我只需要求行和列有多少是平方数。
但是呢,这个题的数据范围超级大,我们就算枚举也需要至少O(n)的时间,但是肯定会超时,接下来就是放大招了。
从1-n的平方数的个数=n开平方向下取整
记住记住!!!!!!!!!!!!!
接下来的问题就是求大数的开方,又是一个难点,记住即可。
一个数的开方数的位数:
如果这个数的长度(l)是奇数:l / 2 + 1
如果这个数的长度(l)是偶数:l / 2
然后枚举求开方数
从最高位开始枚举,假设求256的开方数,256的l是3,3/2+1=2,所以长度是2位,
一开始所有位数都是0,第一位从1开始,1010<256,所以接着用2试探,2020>256.所以第一位写1,接着下一位再开始试探,1111<256,1212<256,1313<256,1414<256,1515=256,1616>256,所以第二位写5,最终得到开方数是15.
具体细节就是数据太大,我们要用到java特有的大数类型
所以核心代码:
BigInteger res = sqrt2(n).multiply(sqrt2(m));
在求大数的平方时可以直接用java自带的函数
BigInteger res = new BigInteger(String.valueOf(arr)).pow(2);
import java.math.BigInteger;
import java.util.Arrays;
import java.util.Scanner;
public class okt10矩阵翻硬币 {
// 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转。
// 我们如果要求最终有几个0,便是求有几个位置可以进行奇数次翻转。
// 一个(n,m)矩阵在对每一个元素都进行Q操作后,0的个为根号下n乘以根号下m
// 假设位数为len的整数,开方取整后为一个lenSqrt位数。
// 当len为偶数,lenSqrt = len / 2 .
// 当len为奇数,lenSqrt = (len / 2) + 1 .
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
// BigInteger n = scanner.nextBigInteger();
// BigInteger m = scanner.nextBigInteger();
// BigInteger res = sqrt1(n).multiply(sqrt1(m));
String n = scanner.next();
String m = scanner.next();
BigInteger res = sqrt2(n).multiply(sqrt2(m));
System.out.println(res);
}
// 大数开根号,字符串查找(解析)
private static BigInteger sqrt2(String s) {
int len = 0;
if (s.length() % 2 == 0) {
len = s.length() / 2;
} else {
len = s.length() / 2 + 1;
}
char[] arr = new char[len];
Arrays.fill(arr, '0');
BigInteger sBigInteger = new BigInteger(s);
for (int pos = 0; pos < len; pos++) {
for (char i = '1'; i <= '9'; i++) {
arr[pos] = i;
BigInteger res = new BigInteger(String.valueOf(arr)).pow(2);
if (res.compareTo(sBigInteger) == 1) {
// arr[pos] = (char) (arr[pos] - 1);
arr[pos] -= 1;
break;
}
}
}
return new BigInteger(String.valueOf(arr));
}
// 大数开根号,折半查找法(自己写的)
private static BigInteger sqrt1(BigInteger n) {
// TODO Auto-generated method stub
BigInteger l = BigInteger.ONE;
BigInteger r = n;
BigInteger mid = BigInteger.ZERO;
while (l.compareTo(r) != 1) {
mid = (l.add(r)).divide(BigInteger.valueOf(2));
// System.out.println(mid);
if (mid.multiply(mid).compareTo(n) == 0) {
break;
}
if (mid.multiply(mid).compareTo(n) == 1) {
r = mid.subtract(BigInteger.ONE);
} else {
l = mid.add(BigInteger.ONE);
}
}
if (mid.multiply(mid) != n && l.multiply(l).compareTo(n) == 1) {
l = l.subtract(BigInteger.ONE);
}
mid = l;
return mid;
}
//大数开根号,折半查找法(解析写的)
private static BigInteger sqrt(BigInteger n) {
// TODO Auto-generated method stub
BigInteger l = BigInteger.ONE;
BigInteger r = n;
BigInteger temp = BigInteger.ZERO;
while (!l.equals(r)) {
BigInteger mid = (l.add(r)).divide(BigInteger.valueOf(2));
// System.out.println(mid);
if (temp.compareTo(BigInteger.ZERO) != 0 && temp.compareTo(mid) == 0) {
break;
} else {
temp = mid;
}
if (mid.multiply(mid).compareTo(n) == 1) {
r = mid;
} else {
l = mid;
}
}
if (l.multiply(l).compareTo(n) == 1) {
l = l.subtract(BigInteger.ONE);
}
return l;
}
}
是不是很神奇,本来数据量这么大的题,竟然在很小的时间复杂度下就实现了。