题目描述:
在X森林里,上帝创建了生命之树。
他给每棵树的每个节点(叶子也称为一个节点)上,都标了一个整数,代表这个点的和谐值。
上帝要在这棵树内选出一个非空节点集S,使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, …, vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。
在这个前提下,上帝要使得S中的点所对应的整数的和尽量大。
这个最大的和就是上帝给生命之树的评分。
经过atm的努力,他已经知道了上帝给每棵树上每个节点上的整数。但是由于 atm 不擅长计算,他不知道怎样有效的求评分。他需要你为他写一个程序来计算一棵树的分数。
「输入格式」
第一行一个整数 n 表示这棵树有 n 个节点。
第二行 n 个整数,依次表示每个节点的评分。
接下来 n-1 行,每行 2 个整数 u, v,表示存在一条 u 到 v 的边。由于这是一棵树,所以是不存在环的。
「输出格式」
输出一行一个数,表示上帝给这棵树的分数。
「样例输入」
5
1 -2 -3 4 5
4 2
3 1
1 2
2 5
「样例输出」
8
「数据范围」
对于 30% 的数据,n <= 10
对于 100% 的数据,0 < n <= 10^5, 每个节点的评分的绝对值不超过 10^6 。
误区1:这个题有一个误区。这一看就是一个树的题,但是树都有根呀,我一开始下意识以为第一个节点就是树的根,其实不是的,每一个点都可以作为树的根。
巧点1:理解这一句话“使得对于S中的任意两个点a,b,都存在一个点列 {a, v1, v2, …, vk, b} 使得这个点列中的每个点都是S里面的元素,且序列中相邻两个点间有一条边相连。”也就是如果有一个结点我们没有选,那么它对应的子节点,我们也就不能选了。
我一开始的思路就是“有依赖的背包”,但是有依赖的背包是知道根结点的,而这个题我们不固定根节点。
树的问题我们都是采用递归。
对于一个结点我们有选和不选,选了,才可以继续考虑她的子节点选不选,不选,就不必考虑她的子节点了,但是关键是,我们怎么判断选还是不选,不能只凭这个结点的值,我们得知道选了这个点,后面子节点的值累加是否可以大于0,要是大于0那么必然就可以选,如果不大于0,就不能选了。(所以我们需要先递归求得子节点总的值后再判断要不要选子节点,也就是下面代码)
private static void dfs(int u, int fa) {
ww[u] = w[u];
for (int i = 0; i < v[u].size(); i++) {
if (v[u].get(i) == fa)
continue;
dfs(v[u].get(i), u);
if (ww[v[u].get(i)] > 0) {
ww[u] += ww[v[u].get(i)];
}
}
if (ww[u] > ans)
ans = ww[u];
}
但凡递归,我们都需要知道起点,但是这个树根是不固定的,那么其实我们可以递归中求出以每个点为根(也就是该点必选)的最值。
以上理解我觉得还是麻烦了。
我们要选出一个S,使得值最大,每个结点会有负值,负值不是我们想要的,但是它和它的孩子累加就可能变成正值,这是我们想要的。这个S只是树上随便一个地方,可以是树的中间部分,只要结点之间是相连的,也就是选了子节点必然选它的根。怎么体现在这个随便。
设数组ww[i]:表示以i为根的树的最大值(在递归的过程中,如果它的子节点的子树的值大于0,我们就选它,如果小于0 ,我们就不选),我们可以dfs递归求ww,然后选ww数组的最大值。,求数组的最大值就体现了随便。
用java来做的话会栈溢出,但是c++不会。
其实我觉得代码并没有体现,这个树的根不固定,只是体现了不一定选一开始的根。我觉得要是体现跟不固定的话,应该把最开始的dfs放在for循环里。
import java.util.Scanner;
import java.util.Vector;
public class t10 {
static Vector<Integer>[] v;
static long ans = 0;
static int[] w;
static long[] ww;
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
w = new int[n];
ww = new long[n];
v = new Vector[n];
for (int i = 0; i < w.length; i++) {
v[i] = new Vector<Integer>();
w[i] = scanner.nextInt();
}
for (int i = 0; i < n - 1; i++) {
int a = scanner.nextInt();
int b = scanner.nextInt();
v[a - 1].add(b - 1);
v[b - 1].add(a - 1);
}
// for (int i = 0; i < w.length; i++) {
// dfs(i, -1);
// }
dfs(0, -1);
System.out.println(ans);
}
private static void dfs(int u, int fa) {
ww[u] = w[u];
for (int i = 0; i < v[u].size(); i++) {
if (v[u].get(i) == fa)
continue;
dfs(v[u].get(i), u);
if (ww[v[u].get(i)] > 0) {
ww[u] += ww[v[u].get(i)];
}
}
if (ww[u] > ans)
ans = ww[u];
}
}