一、购物单
标题: 购物单
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。 这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。 小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。 现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。 取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。 你的任务是计算出,小明最少需要取多少现金。
以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。 特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。 答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
特别提醒:不许携带计算器入场,也不能打开手机。
【答案】:5200
二、纸牌三角形
标题:纸牌三角形
A,2,3,4,5,6,7,8,9 共9张纸牌排成一个正三角形(A按1计算)。要求每个边的和相等。
下图就是一种排法(如有对齐问题,参看p1.png)。
p1.png这样的排法可能会有很多。
如果考虑旋转、镜像后相同的算同一种,一共有多少种不同的排法呢?
请你计算并提交该数字。
注意:需要提交的是一个整数,不要提交任何多余内容。
【答案】:144
分析:
全排列+去特殊值(旋转3种,镜像2种)
暴力:
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc=new Scanner(System.in);
int count=0;
// Set<Integer> set=new HashSet<Integer>();
for(int i=1;i<10;i++){
for(int i2=1;i2<10;i2++){
if(i2==i){continue;}
for(int i3=1;i3<10;i3++){
if(i3==i||i3==i2){continue;}
for(int i4=1;i4<10;i4++){
if(i4==i||i4==i2||i4==i3){continue;}
for(int i5=1;i5<10;i5++){
if(i5==i||i5==i2||i5==i3||i5==i4){continue;}
for(int i6=1;i6<10;i6++){
if(i6==i||i6==i2||i6==i3||i6==i4||i6==i5){continue;}
for(int i7=1;i7<10;i7++){
if(i7==i||i7==i2||i7==i3||i7==i4||i7==i5||i7==i6){continue;}
for(int i8=1;i8<10;i8++){
if(i8==i||i8==i2||i8==i3||i8==i4||i8==i5||i8==i6||i8==i7){continue;}
for(int i9=1;i9<10;i9++){
if(i9==i||i9==i2||i9==i3||i9==i4||i9==i5||i9==i6||i9==i7||i9==i8){continue;}
if(i+i2+i3+i4==i4+i5+i6+i7&&i4+i5+i6+i7==i7+i8+i9+i){
count++;
break;
}
}
}
}
}
}
}
}
}
}
System.out.print(count/6);
}
}
全排列:
import java.util.Scanner;
public class Main {
static int[] a={1,2,3,4,5,6,7,8,9};
static int count=0;
public static void main(String[] args) {
// Scanner sc=new Scanner(System.in);
//int[] a={1,2,3,4,5,6,7,8,9}; //写在里面也可以,是地址传递而不是值传递
perm(a,0,a.length-1);
System.out.print(count/6);
}
public static void perm(int[] a,int p,int q){
if(p==q){
if(a[0]+a[1]+a[2]+a[3]==a[3]+a[4]+a[5]+a[6]&&a[0]+a[1]+a[2]+a[3]==a[6]+a[7]+a[8]+a[0]){
count++;
}
}else{
for(int i=p;i<=q;i++){
swap(a,i,p);
perm(a,p+1,q);
swap(a,i,p);
}
}
}
public static void swap(int[] a,int x,int y){
int temp;
temp=a[x];
a[x]=a[y];
a[y]=temp;
}
}
五、取数位
标题:取数位
求1个整数的第k位数字有很多种方法。 以下的方法就是一种。
public class Main {undefined
static int len(int x){undefined
if(x<10) return 1;
return len(x/10)+1;
}// 取x的第k位数字 static int f(int x, int k){undefined if(len(x)-k==0) return x%10; return ______________________; //填空 } public static void main(String[] args) {undefined int x = 23513; //System.out.println(len(x)); System.out.println(f(x,3)); } }
对于题目中的测试数据,应该打印5。
请仔细分析源码,并补充划线部分所缺少的代码。
注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。
【答案】:f(x / 10, k)
六、最大公共子串
标题:最大公共子串
最大公共子串长度问题就是: 求两个串的所有子串中能够匹配上的最大长度是多少。
比如:“abcdkkk” 和 “baabcdadabc”, 可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
public class Main {undefined
static int f(String s1, String s2)
{undefined
char[] c1 = s1.toCharArray();
char[] c2 = s2.toCharArray();int[][] a = new int[c1.length+1][c2.length+1]; int max = 0; for(int i=1; i<a.length; i++){undefined for(int j=1; j<a[i].length; j++){undefined if(c1[i-1]==c2[j-1]) {undefined a[i][j] = __________________; //填空 if(a[i][j] > max) max = a[i][j]; } } } return max; } public static void main(String[] args){undefined int n = f("abcdkkk", "baabcdadabc"); System.out.println(n); } }
注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。
【答案】:a[i - 1][j - 1] + 1
七、日期问题
标题:日期问题
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)输出
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。样例输入
02/03/04样例输出
2002-03-04
2004-02-03
2004-03-02资源约定: 峰值内存消耗(含虚拟机) < 256M CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
分析:
- 年月日、月日年、日月年,3个可能有重复的(TreeSet自带去重+排序)
- ABC都是【0,9】,但是只有年才可以取0
- 注意月和日的范围
代码:
import java.util.Set;
import java.util.TreeSet;
import java.util.Scanner;
public class Main {
public static void main(String arg[]){
Scanner sc=new Scanner(System.in);
String str=sc.next(),abc="",bca="",cba="";
int a=Integer.valueOf(str.substring(0, 2));
int b=Integer.valueOf(str.substring(3, 5));
int c=Integer.valueOf(str.substring(6, 8));
int aa=0,bb=0,cc=0;
if(a>=0&&a<=59){
aa=2000+a;
}else if(a>=60&&a<=99){
aa=1900+a;
}
if(b>=0&&b<=59){
bb=2000+b;
}else if(b>=60&&b<=99){
bb=1900+b;
}
if(c>=0&&c<=59){
cc=2000+c;
}else if(c>=60&&c<=99){
cc=1900+c;
}
if(hefa(aa,b,c)){
abc=aa+"-"+(b<=9?"0":"")+b+"-"+(c<=9?"0":"")+c;
}
if(hefa(cc,a,b)){
bca=cc+"-"+(a<=9?"0":"")+a+"-"+(b<=9?"0":"")+b;
}
if(hefa(cc,b,a)){
cba=cc+"-"+(b<=9?"0":"")+b+"-"+(a<=9?"0":"")+a;
}
TreeSet<String> ss=new TreeSet<String>(); //TreeSet自带去重+排序
if(abc!=""){ss.add(abc);}
if(bca!=""){ss.add(bca);}
if(cba!=""){ss.add(cba);}
for(String h:ss){
System.out.println(h);
}
}
public static boolean hefa(int year,int month,int day){
boolean rn=false;
if(year%400==0||(year%4==0&&year%100!=0)){
rn=true;
}
if(year<1960||year>2059||month>12||month<1||day>32||day<1){return false;} //注意月和日没有00,年可以有00
if(month==2){
if(rn){
if(day<=29){return true;}else{return false;}
}else{
if(day<=28){return true;}else{return false;}
}
}else{
if(month==4||month==6||month==9||month==11){
if(day<=30){return true;}else{return false;}
}else{
if(day<=31){return true;}else{return false;}
}
}
}
}
八、包子凑数
标题:包子凑数
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
---- 第一行包含一个整数N。(1 <= N <= 100) 以下N行每行包含一个整数Ai。(1 <= Ai <= 100)输出
---- 一个整数代表答案。如果凑不出的数目有无限多个,输出INF。例如, 输入: 2 4 5
程序应该输出: 6
再例如, 输入: 2 4 6
程序应该输出: INF
样例解释: 对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。 对于样例2,所有奇数都凑不出来,所以有无限多个。
资源约定: 峰值内存消耗(含虚拟机) < 256M CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。 提交程序时,注意选择所期望的语言类型和编译器类型。
分析(完全背包+gcd):
若这些数的最大公因数不为1,那必然凑出来的数是最大公因数的倍数
完全背包:0可以凑到,num能凑到,那么num+num+。。。都能凑到,num1+num2能凑到,以此类推。
代码:
import java.util.Scanner;
public class Main {
public static void main(String arg[]){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt(),maxgcd=0;
boolean[] arr=new boolean[100000]; //能否凑出下标为i的数
arr[0]=true; //0这个数可以凑出
for(int i=0;i<n;i++){
int num=sc.nextInt();
if(i==0){
maxgcd=num; //初始化最大公因数
}else{
maxgcd=gcd(num,maxgcd);
}
for(int j=0;j<100000-num;j++){ //完全背包思想
if(arr[j]){
arr[j+num]=true;
}
}
}
if(maxgcd!=1){ //最大公因数不为1,凑出来数必然是最大公因数的倍数。
System.out.print("INF");
}else{ //最大公因数为1,1可以凑出任何数
int count=0;
for(int i=0;i<100000;i++){
if(!arr[i]){
count++;
}
}
System.out.print(count);
}
}
public static int gcd(int a,int b){
if(a<b){
int t=a;
a=b;
b=t;
}
if(b==0){
return a;
}else{
return gcd(b,a%b);
}
}
}
九、分巧克力
标题: 分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
- 形状是正方形,边长是整数
- 大小相同
例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入 第一行包含两个整数N和K。(1 <= N, K <= 100000) 以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi
<= 100000) 输入保证每位小朋友至少能获得一块1x1的巧克力。输出 输出切出的正方形巧克力最大可能的边长。
样例输入: 2 10 6 5 5 6
样例输出: 2
资源约定: 峰值内存消耗(含虚拟机) < 256M CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
分析:
一共n块巧克力,要分给k个小朋友,巧克力块要正方形且大小一样。
一块N*M的巧克力,切成边长为x的巧克力,最多可以切成(N/x) *( M/x)块,
n块巧克力,一共切成(N/x) * (M/x)+(N2/x) *( M2/x)+…块。
边长取值范围【1,100000】
暴力:边长从1到100000,一个一个判断是否能且成不少于k块,如果能切到比k更多,那就让边长继续加1,知道这时候切不了至少k块分给小朋友。
边长1-100000,大巧克力总块数1-100000,时间复杂度度o(n²)。能过一般多的分。
二分法:边长1-100000进行二分,直到找到最佳边长长度。AC满分。
代码:
import java.util.Scanner;
public class Main {
public static void main(String arg[]){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt(),k=sc.nextInt();
int[] h=new int[n];
int[] w=new int[n];
for(int i=0;i<n;i++){
h[i]=sc.nextInt();
w[i]=sc.nextInt();
}
int left=1,right=100000,mid,max=0;
while(left<=right){
mid=(left+right)/2;
int geshu=0;
for(int i=0;i<n;i++){
geshu+=(h[i]/mid)*(w[i]/mid);
}
if(geshu<k){ //可以切的个数小于k说明切的正方形边长mid大了,所以right=mid-1
right=mid-1;
}else{
left=mid+1;
if(max<mid){
max=mid;
}
}
}
System.out.print(max);
}
}
十、k倍区间
标题: k倍区间
给定一个长度为N的数列,A1, A2, … AN,如果其中一段连续的子序列Ai, Ai+1, … Aj(i <=
j)之和是K的倍数,我们就称这个区间[i, j]是K倍区间。你能求出数列中总共有多少个K倍区间吗?
输入
----- 第一行包含两个整数N和K。(1 <= N, K <= 100000) 以下N行每行包含一个整数Ai。(1 <= Ai <= 100000)输出
----- 输出一个整数,代表K倍区间的数目。例如, 输入:
5 2
1
2
3
4
5程序应该输出: 6
资源约定: 峰值内存消耗(含虚拟机) < 256M CPU消耗 < 2000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
所有代码放在同一个源文件中,调试通过后,拷贝提交该源码。 不要使用package语句。不要使用jdk1.7及以上版本的特性。
主类的名字必须是:Main,否则按无效代码处理。
分析:
方法一暴力:
对连续的子序列一一判断,时间复杂度oN²
方法二:
前缀和取模+组合数学
余数相等的两区间的必是k的倍数
代码:
import java.util.Scanner;
public class Main {
public static void main(String arg[]){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt(),k=sc.nextInt();
long ans=0;
int[] a=new int[n];
for(int i=0;i<n;i++){
a[i]=sc.nextInt();
}
for(int i=0;i<n;i++){
long s=0;
for(int j=i;j<n;j++){
s+=a[j];
if(s%k==0){
ans++;
}
}
}
System.out.print(ans);
}
}
import java.util.Scanner;
public class Main {
public static void main(String arg[]){
Scanner sc=new Scanner(System.in);
int n=sc.nextInt(),k=sc.nextInt();
long ans=0L;
int[] a=new int[n+1];
int[] b=new int[n+1]; //按理来说这里应该用long,但是不好用于保存yu
long[] yu=new long[k]; //一定要用long,应为数可能超过int范围
yu[0]=1L; //与0之间的区间
for(int i=1;i<=n;i++){
a[i]=sc.nextInt();
b[i]=(b[i-1]+a[i])%k; //每次取模,保证了在int范围内
yu[b[i]]++;
}
for(int i=0;i<k;i++){
ans+=(yu[i]*(yu[i]-1))/2L; //n个数中选2个构成一个K倍区间
}
System.out.print(ans);
}
}