费马小定理:
当 p 为质数,a为自然数时,且 a < p(当 a > p 时,需要先取模运算) ,有:
ap-1 ≡ 1 (mod p)
ap ≡ a (mod p)
还有一个应用
ap-1 ≡ a-1(mod p)
第15届吉林省赛H题使用过
用来求解除法和逆元的取模
例:
331 (mod 7) = ? —》 36*5*3 —》 36(mod 7) == 1 —》 331 = 3
2925 (mod 11) = ? —》 (29 mod 11)25 (mod 11) —》 725 (mod 11) —》 722*73 —》 2925 = 7
了解费马小定理的用途也可以参考:这里
费马大定理:
当整数 n > 2 时,关于 x,y,z, x2 + y2 = z2 没有解。
勾股法则:(求解毕氏三元组(勾股法则))(求解x , y , z)
a = 2mn
b = m2 - n2
c = m2 + n2
就有 a2 + b2 = c2
根据上述公式再结合奇偶数,得到规律如下:
当 n = 1 时,等式仍成立(但有奇偶数的区别):
a 为偶数时: 三边为: 2n , n2-1 , n2+1
a 为奇数时: 三边为:2n+1 , 2n2+2n , 2n2+2n+1
(注意 : 当 n = 1 时,a只能为奇数为 3,不能为偶数为 2)
//勾股数的列举
#include<stdio.h>
int main()
{
int n;
scanf("%d",&n);
for(int i = 2;i <= n;i++){ //这里要从2开始,不然会有重复
printf("%d %d %d\n",2*i,i*i-1,i*i+1);
printf("%d %d %d\n",2*i+1,2*i*i+2*i,2*i*i+2*i+1);
}
return 0;
}
勾股数 - 特点
观察分析上述的勾股数,可看出它们具有下列二个特点:
1、直角三角形短直角边为奇数,另一条直角边与斜边是两个连续自然数。
2、一个直角三角形的周长等于短直角边的平方与这条边的和。掌握上述二个特点,为解一类题提供了方便。
例:直角三角形的三条边的长度是正整数,其中一条短直角边的长度是13,求这个直角三角形的周长是多少?
用特点1解:设这个直角三角形三边分别为13、x、x+1,则有:169+x2=(x+1)2,解得x=84,此三角形周长=13+84+85=182。
用特点2解:此直角三角形是以奇数为边构成的直角三角形,因此周长=169+13=182。