有 N N N 份物品和一个容量是 M M M 的背包。
第 i i i 份物品有 s i s_i si 件,每件体积是 v i v_i vi,价值是 w i w_i wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
I. 朴素解
直接拆成 ∑ i = 1 n s i \sum_{i=1}^{n} s_i ∑i=1nsi 个01背包求解。时间复杂度 O ( n ∗ s ∗ V ) O(n*s*V) O(n∗s∗V),同数量级下复杂度为 O ( n 3 ) O(n^3) O(n3)。
#include<bits/stdc++.h>
using namespace std;
const int M = 105;
int dp[M];
int main(){
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
int n,m;cin>>n>>m;
for(int i=1;i<=n;i++){
int v,w,s;cin>>v>>w>>s;
for(int k=1;k<=s;k++) // 对每组做s次01背包
for(int j=m;j-v>=0;j--){
dp[j]=max(dp[j], dp[j-v]+w);
}
}
cout<<dp[m]<<endl;
return 0;
}
II. 二进制优化
把每一份物品二进制拆分(注意要从小到大拆分才能完全表示),这样就将 s i s_i si 件物品变成 l o g s i log~s_i log si 件物品,从而时间复杂度降为 O ( n ∗ l o g s ∗ V ) O(n*log~s*V) O(n∗log s∗V)。
#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
const int M = 2005;
int dp[M];
int main(){
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
int n,m;cin>>n>>m;
vector<PII> vec;
for(int i=1;i<=n;i++){
int v,w,s;cin>>v>>w>>s;
int k=1;
while(k<=s){
vec.push_back({v*k,w*k}); // 拆分成若干部分
s-=k;
k*=2;
}
if(s) vec.push_back({v*s,w*s}); // 剩余
}
// n*log(s) 个01背包
for(auto& [v,w]:vec){
for(int j=m;j-v>=0;j--){
dp[j]=max(dp[j], dp[j-v]+w);
}
}
cout<<dp[m]<<endl;
return 0;
}
III. 单调队列优化
事实上,转移只会发生在「对当前物品体积取余相同」的状态之间。
举个栗子,假设当前我们处理到的物品体积和价值均为2,数量为3,而我们背包容量为10。
-
d p [ 10 ] dp[10] dp[10] 只能由 d p [ 8 ] dp[8] dp[8]、 d p [ 6 ] dp[6] dp[6]、 d p [ 4 ] dp[4] dp[4] 转移而来
-
d p [ 9 ] dp[9] dp[9] 只能由 d p [ 7 ] dp[7] dp[7]、 d p [ 5 ] dp[5] dp[5]、 d p [ 3 ] dp[3] dp[3] 转移而来
…
-
d p [ 5 ] dp[5] dp[5] 只能由 d p [ 3 ] dp[3] dp[3]、 d p [ 1 ] dp[1] dp[1] 转移而来
-
d p [ 4 ] dp[4] dp[4] 只能由 d p [ 2 ] dp[2] dp[2]、 d p [ 0 ] dp[0] dp[0] 转移而来
-
d p [ 3 ] dp[3] dp[3] 只能由 d p [ 1 ] dp[1] dp[1] 转移而来
-
d p [ 2 ] dp[2] dp[2] 只能由 d p [ 0 ] dp[0] dp[0] 转移而来
-
当然还有不选的情况,直接从上一层转移过来
若当前状态为
k
k
k,前面可转移过来的状态
x
x
x 应该满足
k
−
x
v
≤
s
\frac{k-x}{v} \le s
vk−x≤s。
下面是维护单调队列的方程转移。
状态的更新应为
d
p
[
k
]
=
d
p
′
[
x
]
+
k
−
x
v
∗
w
dp[k]=dp'[x]+ \frac{k-x}{v}*w
dp[k]=dp′[x]+vk−x∗w。同时要每次取队头的价值都是最大,故维护的单调队列下降。
这样每次转移就是 O ( M ) O(M) O(M),总时间复杂度 O ( n ∗ m ) O(n*m) O(n∗m)。
#include<bits/stdc++.h>
using namespace std;
const int M = 20004;
int dp[2][M];
int q[M];
int main(){
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
int n,m;cin>>n>>m;
for(int i=1;i<=n;i++){
int v,w,s;cin>>v>>w>>s;
for(int j=0;j<=m;j++) dp[i&1][j]=0;
for(int j=0;j<v;j++){ // 枚举能产生余数的数
int hh=0, tt=-1;
for(int k=j;k<=m;k+=v){
while(hh<=tt && (k-q[hh])/v>s) hh++; // 不满足转移条件的状态出队
// 维护单调队列下降, 注意比较的是i-1维
while(hh<=tt && dp[i&1^1][q[tt]]+(k-q[tt])/v*w <= dp[i&1^1][k]) tt--;
q[++tt]=k; // 因为可以不选, 要将k状态先加入
dp[i&1][k]=max(dp[i&1][k], dp[i&1^1][q[hh]]+(k-q[hh])/v*w); // 更新答案
}
}
}
cout<<dp[n&1][m]<<endl;
return 0;
}