多重背包及其优化

N N N 份物品和一个容量是 M M M 的背包。

i i i 份物品有 s i s_i si 件,每件体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。

I. 朴素解

直接拆成 ∑ i = 1 n s i \sum_{i=1}^{n} s_i i=1nsi 个01背包求解。时间复杂度 O ( n ∗ s ∗ V ) O(n*s*V) O(nsV),同数量级下复杂度为 O ( n 3 ) O(n^3) O(n3)

#include<bits/stdc++.h>
using namespace std;
const int M = 105;

int dp[M];

int main(){
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    int n,m;cin>>n>>m;
    for(int i=1;i<=n;i++){
        int v,w,s;cin>>v>>w>>s;
        for(int k=1;k<=s;k++) // 对每组做s次01背包
        for(int j=m;j-v>=0;j--){
            dp[j]=max(dp[j], dp[j-v]+w);
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

II. 二进制优化

把每一份物品二进制拆分(注意要从小到大拆分才能完全表示),这样就将 s i s_i si 件物品变成 l o g   s i log~s_i log si 件物品,从而时间复杂度降为 O ( n ∗ l o g   s ∗ V ) O(n*log~s*V) O(nlog sV)

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
const int M = 2005;

int dp[M];

int main(){
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    int n,m;cin>>n>>m;
    vector<PII> vec;
    for(int i=1;i<=n;i++){
        int v,w,s;cin>>v>>w>>s;
        int k=1;
        while(k<=s){
            vec.push_back({v*k,w*k}); // 拆分成若干部分
            s-=k;
            k*=2;
        }
        if(s) vec.push_back({v*s,w*s}); // 剩余
    }
    // n*log(s) 个01背包
    for(auto& [v,w]:vec){
        for(int j=m;j-v>=0;j--){
            dp[j]=max(dp[j], dp[j-v]+w);
        }
    }
    cout<<dp[m]<<endl;
    return 0;
}

III. 单调队列优化

事实上,转移只会发生在「对当前物品体积取余相同」的状态之间。

举个栗子,假设当前我们处理到的物品体积和价值均为2数量为3,而我们背包容量为10

  • d p [ 10 ] dp[10] dp[10] 只能由 d p [ 8 ] dp[8] dp[8] d p [ 6 ] dp[6] dp[6] d p [ 4 ] dp[4] dp[4] 转移而来

  • d p [ 9 ] dp[9] dp[9] 只能由 d p [ 7 ] dp[7] dp[7] d p [ 5 ] dp[5] dp[5] d p [ 3 ] dp[3] dp[3] 转移而来

  • d p [ 5 ] dp[5] dp[5] 只能由 d p [ 3 ] dp[3] dp[3] d p [ 1 ] dp[1] dp[1] 转移而来

  • d p [ 4 ] dp[4] dp[4] 只能由 d p [ 2 ] dp[2] dp[2] d p [ 0 ] dp[0] dp[0] 转移而来

  • d p [ 3 ] dp[3] dp[3] 只能由 d p [ 1 ] dp[1] dp[1] 转移而来

  • d p [ 2 ] dp[2] dp[2] 只能由 d p [ 0 ] dp[0] dp[0] 转移而来

  • 当然还有不选的情况,直接从上一层转移过来

若当前状态为 k k k,前面可转移过来的状态 x x x 应该满足 k − x v ≤ s \frac{k-x}{v} \le s vkxs
转移1

下面是维护单调队列的方程转移。

转移2
状态的更新应为 d p [ k ] = d p ′ [ x ] + k − x v ∗ w dp[k]=dp'[x]+ \frac{k-x}{v}*w dp[k]=dp[x]+vkxw。同时要每次取队头的价值都是最大,故维护的单调队列下降。

这样每次转移就是 O ( M ) O(M) O(M),总时间复杂度 O ( n ∗ m ) O(n*m) O(nm)

#include<bits/stdc++.h>
using namespace std;
const int M = 20004;

int dp[2][M];
int q[M];

int main(){
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    int n,m;cin>>n>>m;
    for(int i=1;i<=n;i++){
        int v,w,s;cin>>v>>w>>s;
        for(int j=0;j<=m;j++) dp[i&1][j]=0;
        for(int j=0;j<v;j++){ // 枚举能产生余数的数
            int hh=0, tt=-1;
            for(int k=j;k<=m;k+=v){
                while(hh<=tt && (k-q[hh])/v>s) hh++; // 不满足转移条件的状态出队
                // 维护单调队列下降, 注意比较的是i-1维
                while(hh<=tt && dp[i&1^1][q[tt]]+(k-q[tt])/v*w <= dp[i&1^1][k]) tt--; 
                q[++tt]=k; // 因为可以不选, 要将k状态先加入
                dp[i&1][k]=max(dp[i&1][k], dp[i&1^1][q[hh]]+(k-q[hh])/v*w); // 更新答案
            }
        }
    }
    cout<<dp[n&1][m]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值