给定一个带权无向图,如果是连通图,则至少存在一棵最小生成树,有时最小生成树并不唯一。本题就要求你计算最小生成树的总权重,并且判断其是否唯一。
输入格式:
首先第一行给出两个整数:无向图中顶点数 N(≤500)和边数 M。随后 M 行,每行给出一条边的两个端点和权重,格式为“顶点1 顶点2 权重”,其中顶点从 1 到N 编号,权重为正整数。题目保证最小生成树的总权重不会超过 230。
输出格式:
如果存在最小生成树,首先在第一行输出其总权重,第二行输出“Yes”,如果此树唯一,否则输出“No”。如果树不存在,则首先在第一行输出“No MST”,第二行输出图的连通集个数。
输入样例 1:
5 7
1 2 6
5 1 1
2 3 4
3 4 3
4 1 7
2 4 2
4 5 5
结尾无空行
输出样例 1:
11
Yes
结尾无空行
输入样例 2:
4 5
1 2 1
2 3 1
3 4 2
4 1 2
3 1 3
结尾无空行
输出样例 2:
4
No
结尾无空行
输入样例 3:
5 5
1 2 1
2 3 1
3 4 2
4 1 2
3 1 3
结尾无空行
输出样例 3:
No MST
2
问题1:是否能生成最小生成树?
——>根据kruskral算法,若合并次数< n - 1次,则说明无法生成。
问题2:不能生成最小生成树情况下有多少个连通集合?
——>用一个map存一下祖宗节点,最后输出size即可。
问题3:如何判断最小生成树是否唯一?
——>去求次小生成树,次小生成树和最小生成树只有一边之差。
在求解最小生成树的过程中,我们用一个数组记录哪些边被用到了
对于没有用到的边,它连接的两个顶点称作a, b。我们把这条没被用过的边加入到最小生成树中,并删除原最小生成树连接a,b的边,其实就是结果减去原连接a,b两点的边的长度,再加上新加的这条边的长度,去判断一下两种情况下结果是否相等, 如果相等就说明最小生成树不唯一(因为用到的边不同)。
上代码!
#include<iostream>
#include<algorithm>
#include<unordered_map>
#include<cstring>
using namespace std;
const int N = 510;
unordered_map<int, int> fa;
int n, m;
int p[N];
struct Edge
{
int a, b, c;
bool operator < (const Edge &w) const
{
return c < w.c;
}
}edge[N * N];
bool st[N]; //判断边是否被用到了
int g[N];
int find(int x)//并查集+路径压缩
{
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main()
{
cin >> n >> m;
for(int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
edge[i] = {a, b, c};
}
sort(edge, edge + m);
int cnt = 0; //记录合并次数
long long res = 0; //记录结果
for(int i = 1; i <= n; i++) p[i] = i; //并查集初始化
for(int i = 0; i < m; i++)
{
auto t = edge[i];
int x = find(t.a), y = find(t.b);
if(x != y) //集合不一样就合并
{
cnt++; //合并次数++
st[i] = true; //边被使用了
p[x] = y; //合并集合
res += t.c;
g[t.a] = g[t.b] = t.c; //记录边长,为后面判断生成树是否唯一服务
}
}
if(cnt < n - 1) //合并次数 < n - 1说明不连通。(一开始1个点,一直加入加入...到n个点需要n - 1次)
{
for(int i = 1; i <= n; i++)
{
int t = find(i);
if(!fa[t]) fa[t] = 1; //统计祖宗,放入map
}
cout << "No MST" << endl;
cout << fa.size() << endl;//祖宗个数
return 0;
}
cout << res << endl;
for(int i = 0; i < n; i++)
{
if(!st[i]) // 边没用过
{
auto t = edge[i];
int a = t.a, b = t.b; //边连的两个点
if(res - g[a] + t.c == res) //结果相同则生成树不唯一
{
puts("No");
return 0;
}
}
}
cout << "Yes" << endl;
return 0;
}