最小生成树的唯一性 (kruskral + 次小生成树)

给定一个带权无向图,如果是连通图,则至少存在一棵最小生成树,有时最小生成树并不唯一。本题就要求你计算最小生成树的总权重,并且判断其是否唯一。

输入格式:

首先第一行给出两个整数:无向图中顶点数 N(≤500)和边数 M。随后 M 行,每行给出一条边的两个端点和权重,格式为“顶点1 顶点2 权重”,其中顶点从 1 到N 编号,权重为正整数。题目保证最小生成树的总权重不会超过 230。

输出格式:

如果存在最小生成树,首先在第一行输出其总权重,第二行输出“Yes”,如果此树唯一,否则输出“No”。如果树不存在,则首先在第一行输出“No MST”,第二行输出图的连通集个数。

输入样例 1:

5 7
1 2 6
5 1 1
2 3 4
3 4 3
4 1 7
2 4 2
4 5 5

结尾无空行

输出样例 1:

11
Yes

结尾无空行

输入样例 2:

4 5
1 2 1
2 3 1
3 4 2
4 1 2
3 1 3

结尾无空行

输出样例 2:

4
No

结尾无空行

输入样例 3:

5 5
1 2 1
2 3 1
3 4 2
4 1 2
3 1 3

结尾无空行

输出样例 3:

No MST
2

 问题1:是否能生成最小生成树?

——>根据kruskral算法,若合并次数< n - 1次,则说明无法生成。

问题2:不能生成最小生成树情况下有多少个连通集合?

——>用一个map存一下祖宗节点,最后输出size即可。

问题3:如何判断最小生成树是否唯一?

——>去求次小生成树,次小生成树和最小生成树只有一边之差。

         在求解最小生成树的过程中,我们用一个数组记录哪些边被用到了

         对于没有用到的边,它连接的两个顶点称作a, b。我们把这条没被用过的边加入到最小生成树中,并删除原最小生成树连接a,b的边,其实就是结果减去原连接a,b两点的边的长度,再加上新加的这条边的长度,去判断一下两种情况下结果是否相等, 如果相等就说明最小生成树不唯一(因为用到的边不同)。

上代码!

#include<iostream>
#include<algorithm>
#include<unordered_map>
#include<cstring>

using namespace std;

const int N = 510;
unordered_map<int, int> fa;
int n, m;
int p[N];

struct Edge
{
    int a, b, c;
    bool operator < (const Edge &w) const
    {
        return c < w.c;
    }
}edge[N * N];

bool st[N]; //判断边是否被用到了
int g[N];

int find(int x)//并查集+路径压缩
{
    if(p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int main()
{
    cin >> n >> m;
    for(int i = 0; i < m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        edge[i] = {a, b, c};
    }
    sort(edge, edge + m);
    int cnt = 0; //记录合并次数
    long long res = 0; //记录结果
    for(int i = 1; i <= n; i++) p[i] = i; //并查集初始化
    
    for(int i = 0; i < m; i++)
    {
        auto t = edge[i];
        int x = find(t.a), y = find(t.b);
        if(x != y) //集合不一样就合并
        {
            cnt++; //合并次数++
            st[i] = true; //边被使用了
            p[x] = y; //合并集合
            res += t.c;
            g[t.a] = g[t.b] = t.c; //记录边长,为后面判断生成树是否唯一服务
        }
    }
    
    if(cnt < n - 1) //合并次数 < n - 1说明不连通。(一开始1个点,一直加入加入...到n个点需要n - 1次)
    {
        for(int i = 1; i <= n; i++)
        {
            int t = find(i);
            if(!fa[t]) fa[t] = 1; //统计祖宗,放入map
        }
        cout << "No MST" << endl;
        cout << fa.size() << endl;//祖宗个数
        return 0;
    }
    cout << res << endl;
    for(int i = 0; i < n; i++)
    {
        if(!st[i]) // 边没用过
        {
            auto t = edge[i];
            int a = t.a, b = t.b; //边连的两个点
            if(res - g[a] + t.c == res) //结果相同则生成树不唯一
            {
                puts("No");
                return 0;
            }
        }
    }
    cout << "Yes" << endl;
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值