常见存储、查找算法

存储

  1. 散列存储:即哈希的存储方式。

  2. 顺序存储:数组的存储方式

  3. 链式存储:链式前向星、vector<>

  4. 压缩存储

  5. 索引存储

查找

常见查找算法

顺序查找

一个一个往下找,复杂度 \(O(\dfrac{n+1}{2})\)

适合顺序存储,不适合压缩存储、索引存储等。

折半查找、二分查找

查找次数:\(a<\log_2 n<b(a,b,c\in \mathbb{Z})\)

查找失败时,至少比较 \(a\) 次关键字;查找成功时,最多比较关键字次数是 \(b\)

差值查找

咕咕咕

斐波那契查找

咕咕咕

二叉查找树

二叉查找树(英语:Binary Search Tree),也称为二叉搜索树、有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树:

  1. 若任意节点的左子树不空,则左子树上所有节点的key值均小于它的根节点的值;

  2. 若任意节点的右子树不空,则右子树上所有节点的key值均大于它的根节点的值;

  3. 任意节点的左、右子树也分别为二叉查找树;

  4. 没有键值相等的节点。

分块查找

分块查找又称索引顺序查找,它是顺序查找的一种改进方法。

算法的思想是将 \(n\) 个数据元素"按块有序"划分为 \(m\) 块( \(m\le n\) )。每一块中的结点不必有序,但块与块之间必须"按块有序",每个块内的的最大元素小于下一块所有元素的任意一个值。

在块与块之间进行二分操作。

时间复杂度:\(O(\log m + \dfrac{n}{m})\)

哈希查找

哈希通过散列表来实现存储与查找。

其中散列函数只要有一下几类:

  1. 直接定址法:取关键字或关键字的某个线性函数值为散列地址。即 \(\text{Hash}(k) = k\)\(\text{Hash}(k) = a \times k + b\) ,其中 \(a,b\) 为常数(这种散列函数叫做自身函数)

  2. 数字分析法:假设关键字是以 \(r\) 为基的数,并且哈希表中可能出现的关键字都是事先知道的,则可取关键字的若干数位组成哈希地址。

  3. 平方取中法:取关键字平方后的中间几位为哈希地址。通常在选定哈希函数时不一定能知道关键字的全部情况,取其中的哪几位也不一定合适,而一个数平方后的中间几位数和数的每一位都相关,由此使随机分布的关键字得到的哈希地址也是随机的。取的位数由表长决定。

  4. 折叠法:将关键字分割成位数相同的几部分(最后一部分的位数可以不同),然后取这几部分的叠加和(舍去进位)作为哈希地址。

  5. 随机数法

  6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 \(\text{Hash}(k) = k \pmod{p}\)\(p\le m\) 。不仅可以对关键字直接取模,也可在折叠法、平方取中法等运算之后取模。对 \(p\) 的选择很重要,一般取素数或 \(m\) ,若 \(p\) 选择不好,容易产生冲突。

为了避免哈希冲突,一般有一下几种方法:

  • 开放寻址法

    • 线性探测法:若发现位置已经被占用,则一个一个往后找。

    • 二次探测法:采用开放定址法处理冲突中的二次探测再散列(也即是题目中的二元探测法),则哈希函数变为 \(\text{Hash}(k)=(\text{Hash}(k)+d) \pmod{mod}\),其中 \(d=1^2,-1^2,2^2,-2^2,3^2,\dots\)

    • 双重散列

  • 链地址法:把数值加入哈希的链表中。

(复赛中)也可以使用线性探测法解决哈希冲突问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值