存储
-
散列存储:即哈希的存储方式。
-
顺序存储:数组的存储方式
-
链式存储:链式前向星、
vector<>
-
压缩存储
-
索引存储
查找
顺序查找
一个一个往下找,复杂度 \(O(\dfrac{n+1}{2})\) 。
适合顺序存储,不适合压缩存储、索引存储等。
折半查找、二分查找
查找次数:\(a<\log_2 n<b(a,b,c\in \mathbb{Z})\)
查找失败时,至少比较 \(a\) 次关键字;查找成功时,最多比较关键字次数是 \(b\) 。
差值查找
咕咕咕
斐波那契查找
咕咕咕
二叉查找树
二叉查找树(英语:Binary Search Tree),也称为二叉搜索树、有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一棵空树或者具有下列性质的二叉树:
-
若任意节点的左子树不空,则左子树上所有节点的key值均小于它的根节点的值;
-
若任意节点的右子树不空,则右子树上所有节点的key值均大于它的根节点的值;
-
任意节点的左、右子树也分别为二叉查找树;
-
没有键值相等的节点。
分块查找
分块查找又称索引顺序查找,它是顺序查找的一种改进方法。
算法的思想是将 \(n\) 个数据元素"按块有序"划分为 \(m\) 块( \(m\le n\) )。每一块中的结点不必有序,但块与块之间必须"按块有序",每个块内的的最大元素小于下一块所有元素的任意一个值。
在块与块之间进行二分操作。
时间复杂度:\(O(\log m + \dfrac{n}{m})\)
哈希查找
哈希通过散列表来实现存储与查找。
其中散列函数只要有一下几类:
-
直接定址法:取关键字或关键字的某个线性函数值为散列地址。即 \(\text{Hash}(k) = k\) 或 \(\text{Hash}(k) = a \times k + b\) ,其中 \(a,b\) 为常数(这种散列函数叫做自身函数)
-
数字分析法:假设关键字是以 \(r\) 为基的数,并且哈希表中可能出现的关键字都是事先知道的,则可取关键字的若干数位组成哈希地址。
-
平方取中法:取关键字平方后的中间几位为哈希地址。通常在选定哈希函数时不一定能知道关键字的全部情况,取其中的哪几位也不一定合适,而一个数平方后的中间几位数和数的每一位都相关,由此使随机分布的关键字得到的哈希地址也是随机的。取的位数由表长决定。
-
折叠法:将关键字分割成位数相同的几部分(最后一部分的位数可以不同),然后取这几部分的叠加和(舍去进位)作为哈希地址。
-
随机数法
-
除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 \(\text{Hash}(k) = k \pmod{p}\) , \(p\le m\) 。不仅可以对关键字直接取模,也可在折叠法、平方取中法等运算之后取模。对 \(p\) 的选择很重要,一般取素数或 \(m\) ,若 \(p\) 选择不好,容易产生冲突。
为了避免哈希冲突,一般有一下几种方法:
-
开放寻址法
-
线性探测法:若发现位置已经被占用,则一个一个往后找。
-
二次探测法:采用开放定址法处理冲突中的二次探测再散列(也即是题目中的二元探测法),则哈希函数变为 \(\text{Hash}(k)=(\text{Hash}(k)+d) \pmod{mod}\),其中 \(d=1^2,-1^2,2^2,-2^2,3^2,\dots\)
-
双重散列
-
-
链地址法:把数值加入哈希的链表中。