python项目实战分析

针对订单order_id

#加载数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
#plt.rcParams['axes.unicode_minus']=False   #这两行需要手动设置
data1=pd.read_excel('D:\\zhangxinfile\\python数据实战练习(jupyter lab)\\数据分析实战项目资料\餐厅\\meal_order_detail.xlsx',sheet_name='meal_order_detail1')
data2=pd.read_excel('D:\\zhangxinfile\\python数据实战练习(jupyter lab)\\数据分析实战项目资料\餐厅\\meal_order_detail.xlsx',sheet_name='meal_order_detail2')
data3=pd.read_excel('D:\\zhangxinfile\\python数据实战练习(jupyter lab)\\数据分析实战项目资料\餐厅\\meal_order_detail.xlsx',sheet_name='meal_order_detail3')
data=pd.concat([data1,data2,data3],axis=0)
#data.info()
#2.数据预处理(合并数据,NA处理),分析数据
data.dropna(axis=1,inplace=True)
data.info()

在这里插入图片描述

#统计卖出菜品的平均价格
round(data['amounts'].mean(),2)

在这里插入图片描述

#频数统计,什么菜最受欢迎(对菜名进行频数统计,取最大的前十名)
dishes_count=data['dishes_name'].value_counts()[0:10]
print(dishes_count)
#数据可视化
dishes_count.shape#查看为一维数据

在这里插入图片描述

dishes_count.plot(kind='line',color='red')
dishes_count.plot(kind='bar',fontsize='16')#回执柱状图就可以
for x,y in enumerate(dishes_count):      #加上文字
    print(x,y)
    plt.text(x,y+2,y,ha='center',fontsize='12')

在这里插入图片描述

#订单点菜的种类最多(种类和数量不一样)
data_group = data['order_id'].value_counts()[0:10]
data_group.plot(kind='bar',fontsize='16',color=['red','green','blue','pink','purple'])
plt.title('订单点菜的种类TOP10',fontsize='16')
plt.xlabel('订单ID',fontsize='16')
plt.ylabel('订单种类',fontsize='16')
#8月份餐厅订单点菜种类前10名,平均点菜25个菜品

在这里插入图片描述

#订单ID点菜数量最多(分组order_id,counts求和,排序,前十)
data['total_amounts']=data['counts']*data['amounts']# 统计单道菜的消费总额
dataGroup= data[['order_id','counts','amounts','total_amounts']].groupby(by='order_id')
Group_sum=dataGroup.sum()#分组求和,按照order_id进行分组求和分别求counts的和和amounts的和,total_amounts的和
# Group_sum
sort_counts= Group_sum.sort_values(by='counts',ascending=False)#按照counts进行降序排序
#sort_counts
sort_counts['counts'][0:10].plot(kind='bar',fontsize=16)
plt.title('订单ID点菜数量TOP10',fontsize='16')
plt.xlabel('订单ID',fontsize='16')
plt.ylabel('订单数量',fontsize='16')
#sort_counts['counts']
#八月份订单点菜数量前10名

在这里插入图片描述

#那个订单消费最多
sort_tatal_amounts=Group_sum.sort_values(by='total_amounts',ascending=False)
sort_tatal_amounts['total_amounts'][:10].plot(kind='bar',fontsize='16',color='pink')
plt.title('消费金额TOP10',fontsize='16')
plt.xlabel('订单ID',fontsize='16')
plt.ylabel('消费金额',fontsize='16')

在这里插入图片描述

#哪个订单ID平均消费最贵
Group_sum['average']=Group_sum['total_amounts']/Group_sum['counts']
sort_average=Group_sum.sort_values(by='average',ascending=False)
sort_average['average'][:].plot(kind='bar',fontsize='16')
plt.title('消费单价TOP10',fontsize='16')
plt.xlabel('订单ID',fontsize='16')
plt.ylabel('消费平均单价',fontsize='16')

在这里插入图片描述

针对时间日期进行分析

#一天当中什么时间段,点菜数量比较集中。
data['hourcount']=1 #新列,用作计数器
data['time']=pd.to_datetime(data['place_order_time'])#将时间转化成日期类型进行储存
data['hour']=data['time'].map(lambda x:x.hour)
gp_by_hour=data.groupby(by='hour').count()['hourcount']
gp_by_hour
gp_by_hour.plot(kind='bar',fontsize='16')
plt.title('下单数与小时的关系图',fontsize='16')
plt.xlabel('小时',fontsize='16')
plt.ylabel('下单数量',fontsize='16')

在这里插入图片描述

#八月份那一天的订单数量最多
data['daycount']=1
data['day']=data['time'].map(lambda x:x.day)# 解析天数
#data
gp_by_day=data.groupby(by='day').count()['daycount']  #不单独取出['daycount']则会把每一列都进行计数
gp_by_day.plot(kind='bar',fontsize=16)
plt.title('点菜数量与日期的关系',fontsize='16')
plt.xlabel('8月份日期',fontsize='16')
plt.ylabel('点菜数量',fontsize='16')

在这里插入图片描述

#可以进行排序,取出点菜量最大的前五天
gp_sort_day=gp_by_day.sort_values(ascending=False)[:5]
gp_sort_day.plot(kind='bar',fontsize='16')
plt.title('点菜数量TOP5',fontsize='16')
plt.xlabel('8月份日期',fontsize='16')
plt.ylabel('点菜数量',fontsize='16')

在这里插入图片描述

#查看星期几人数最多,订餐数最多,映射数据到星期
data['weekcount']=1#用之前的计数器也可以,这样会更加清晰
data['weekday']=data['time'].map(lambda x:x.weekday())
gp_by_weekday=data.groupby(by='weekday').count()['weekcount']
gp_by_weekday.plot(kind='bar',fontsize=16)
plt.title('点菜数量与星期的关系图',fontsize='16')
plt.xlabel('8月份星期',fontsize='16')
plt.ylabel('点菜数量',fontsize='16')

在这里插入图片描述

技术(不同维度进行数据分析)

针对订单order_id:

什么菜最受欢迎
点菜的种类
点菜的数量
消费金额最大
平均消费最贵

针对时间日期进行分析:

点菜量比较集中的时间
哪一天订餐数量最大
人们喜欢在星期几吃饭
星期几就餐人数最多

技术点:

拼接数据:pd.concat([列1,列2,列3])
分组进行统计(分组去和)
排序,切片TOP10
分析柱状图走势和高度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值