针对订单order_id
#加载数据
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文标签
#plt.rcParams['axes.unicode_minus']=False #这两行需要手动设置
data1=pd.read_excel('D:\\zhangxinfile\\python数据实战练习(jupyter lab)\\数据分析实战项目资料\餐厅\\meal_order_detail.xlsx',sheet_name='meal_order_detail1')
data2=pd.read_excel('D:\\zhangxinfile\\python数据实战练习(jupyter lab)\\数据分析实战项目资料\餐厅\\meal_order_detail.xlsx',sheet_name='meal_order_detail2')
data3=pd.read_excel('D:\\zhangxinfile\\python数据实战练习(jupyter lab)\\数据分析实战项目资料\餐厅\\meal_order_detail.xlsx',sheet_name='meal_order_detail3')
data=pd.concat([data1,data2,data3],axis=0)
#data.info()
#2.数据预处理(合并数据,NA处理),分析数据
data.dropna(axis=1,inplace=True)
data.info()
round(data['amounts'].mean(),2)
dishes_count=data['dishes_name'].value_counts()[0:10]
print(dishes_count)
dishes_count.shape
dishes_count.plot(kind='line',color='red')
dishes_count.plot(kind='bar',fontsize='16')
for x,y in enumerate(dishes_count):
print(x,y)
plt.text(x,y+2,y,ha='center',fontsize='12')
data_group = data['order_id'].value_counts()[0:10]
data_group.plot(kind='bar',fontsize='16',color=['red','green','blue','pink','purple'])
plt.title('订单点菜的种类TOP10',fontsize='16')
plt.xlabel('订单ID',fontsize='16')
plt.ylabel('订单种类',fontsize='16')
data['total_amounts']=data['counts']*data['amounts']
dataGroup= data[['order_id','counts','amounts','total_amounts']].groupby(by='order_id')
Group_sum=dataGroup.sum()
sort_counts= Group_sum.sort_values(by='counts',ascending=False)
sort_counts['counts'][0:10].plot(kind='bar',fontsize=16)
plt.title('订单ID点菜数量TOP10',fontsize='16')
plt.xlabel('订单ID',fontsize='16')
plt.ylabel('订单数量',fontsize='16')
sort_tatal_amounts=Group_sum.sort_values(by='total_amounts',ascending=False)
sort_tatal_amounts['total_amounts'][:10].plot(kind='bar',fontsize='16',color='pink')
plt.title('消费金额TOP10',fontsize='16')
plt.xlabel('订单ID',fontsize='16')
plt.ylabel('消费金额',fontsize='16')
Group_sum['average']=Group_sum['total_amounts']/Group_sum['counts']
sort_average=Group_sum.sort_values(by='average',ascending=False)
sort_average['average'][:].plot(kind='bar',fontsize='16')
plt.title('消费单价TOP10',fontsize='16')
plt.xlabel('订单ID',fontsize='16')
plt.ylabel('消费平均单价',fontsize='16')
针对时间日期进行分析
data['hourcount']=1
data['time']=pd.to_datetime(data['place_order_time'])
data['hour']=data['time'].map(lambda x:x.hour)
gp_by_hour=data.groupby(by='hour').count()['hourcount']
gp_by_hour
gp_by_hour.plot(kind='bar',fontsize='16')
plt.title('下单数与小时的关系图',fontsize='16')
plt.xlabel('小时',fontsize='16')
plt.ylabel('下单数量',fontsize='16')
data['daycount']=1
data['day']=data['time'].map(lambda x:x.day)
gp_by_day=data.groupby(by='day').count()['daycount']
gp_by_day.plot(kind='bar',fontsize=16)
plt.title('点菜数量与日期的关系',fontsize='16')
plt.xlabel('8月份日期',fontsize='16')
plt.ylabel('点菜数量',fontsize='16')
gp_sort_day=gp_by_day.sort_values(ascending=False)[:5]
gp_sort_day.plot(kind='bar',fontsize='16')
plt.title('点菜数量TOP5',fontsize='16')
plt.xlabel('8月份日期',fontsize='16')
plt.ylabel('点菜数量',fontsize='16')
data['weekcount']=1
data['weekday']=data['time'].map(lambda x:x.weekday())
gp_by_weekday=data.groupby(by='weekday').count()['weekcount']
gp_by_weekday.plot(kind='bar',fontsize=16)
plt.title('点菜数量与星期的关系图',fontsize='16')
plt.xlabel('8月份星期',fontsize='16')
plt.ylabel('点菜数量',fontsize='16')
技术(不同维度进行数据分析)
针对订单order_id:
什么菜最受欢迎
点菜的种类
点菜的数量
消费金额最大
平均消费最贵
针对时间日期进行分析:
点菜量比较集中的时间
哪一天订餐数量最大
人们喜欢在星期几吃饭
星期几就餐人数最多
技术点:
拼接数据:pd.concat([列1,列2,列3])
分组进行统计(分组去和)
排序,切片TOP10
分析柱状图走势和高度