机器学习
文章平均质量分 97
python3 数据分析与机器学习实战,专栏的文章最终不会少于十篇,适合刚开始学习的新手,专栏会向诸位介绍Python中机器学习的分析工具、数据预处理、分类问题、预测分析、关联分析、集成学习、深度学习、数据降维及压缩、聚类分析、回归问题的基本内容,配合相应的实例来引导大家的学习。
PlutoCtx
首先我很懒,其次是其次,chentingxian195467@163.com
展开
-
数据分析与机器学习实战(二)——聚类分析(以K-means聚类为例)
机器学习方法主要分为监督学习方法和非监督学习方法两种。监督学习方法是在样本类别标签已知的条件下进行的,可以统计出各类训练样本的概率分布、特征空间分布区域等描述量,然后利用这些参数进行分类器设计。在实际应用中,很多情况是无法预先知道样本标签的,因而只能利用非监督机器学习方法进行分析。聚类分析就是典型的非监督学习方法,它在没有给定划分类别的情况下,根据数据自身的距离或相似度进行样本分组。聚类分析概述K-means 算法。原创 2023-04-02 16:53:03 · 10067 阅读 · 0 评论 -
数据分析与机器学习实战(一)——机器学习基础
例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。前面章节已经学习了 Python 的基本语法和编程知识,在学习如何使用 Python 进行数据分析之前,来认识一下什么是机器学习,以及机器学习的不同分类,这些基本知识对理解和学习机器学习的常用算法非常有帮助。本章将介绍机器学习的基本概念及分类。机器学习概述监督学习简介非监督学习简介增强学习简介深度学习简介机器学习常用术语机器是否具有学习的能力呢?我们来看一些报道。原创 2023-04-01 11:06:32 · 1828 阅读 · 0 评论