E - Blackout 2(离线 + 思维倒推 + 并查集)

题目链接

哎呦我去,比赛的时候差一点就写出来了…
wa了好几发,没想明白错在哪;
赛后想了一下,原来少了个判断,在一个集合的时候就不用合并了…我是sb
不过还是很开心的,第一次在比赛时能写出离线处理的题。

离线 + 思维倒推 + 并查集;

分析

首先读完题目我的第一个反应就是之前写过类似的,PAT的《红色警戒》;
因此引导我往并查集方面去想,但是《红色警戒》数据范围很小,每个询问都去暴力找连通块就行;

显然在这道题是行不通的,看一下数据范围5×1e5,范围比较大,每次询问可以带一个log;
但是并查集没有log,所以我就产生了离线处理,然后O(1)查询的想法;

然后模拟了一下发现从前往后询问并不好搞…后面的询问用不到前面的询问…
因此考虑从后往前处理询问,每次相当于是新建一条路,判断两个连通块的关系并且合并就行;
这样就能用到已经处理好的询问信息;

这里有个细节,由于发电场是编号比较大的点;
因此我们合并的时候可以把集合都挂在编号比较大的点;
这样find的时候就知道了集合是否有发电站!

代码

#include<iostream>
#include<queue>
#include<cstring>
#include<vector>
#include<stdio.h>
#include<map>
#include<algorithm>
#include<deque>
#include<stack>
#include<set>
// #include <unordered_map>
#include<math.h>
#include<string.h>
#define IOS ios::sync_with_stdio(false),cin.tie(0);
using namespace std;
 
#define pb push_back
#define coutl cout<<"------------"<<endl;
#define fi first
#define se second

#define ire(x) scanf("%d",&x)
#define iire(a,b) scanf("%d %d",&a,&b)
#define lre(x) scanf("%lld",&x)
#define llre(a,b) scanf("%lld %lld",&a,&b)
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define endl "\n"
#define PI acos(-1.0)
#define int long long
// #define double long double
typedef long long ll;
typedef unsigned long long ull;
      
typedef pair<int, int> PII;
typedef pair<double, int> PDI;
typedef pair<ll, ll> PLL;
typedef pair<double, double> PDD;
typedef pair<double, pair<int, double> > PDID;
typedef pair<char, char> PCC;
typedef pair<char, pair<int, int> > PCII;
typedef pair<int, pair<int, int> > PIII;
typedef pair<int, pair<int, pair<int, int> > > PIIII;
typedef pair<ll, pair<int, int> > PLII;

const int maxn = 3e6 + 7;
const int N = 2e6 + 7;
const int M = 4e6 + 7;
const int mod = 1e9 + 7;
const int inv = mod - mod/2;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const double pi = acos(-1);
const double eps = 1e-8;
  
ll gcd(ll a,ll b) {return b==0 ? a : gcd(b,a%b);}
ll lcm(ll a,ll b) {return a*b / gcd(a,b);}
ll qmi(ll a,ll b,ll p) {ll ans = 1; while(b) { if(b & 1) ans = ans * a % p; a = a * a % p; b >>= 1; } return ans;}
int lowbit(int x) {return x & (-x);}

int n,m,e,q;
int f[maxn];
int sz[maxn];
int vis[maxn];
int ans[maxn];

PII p[maxn];
int qq[maxn];
map<int,int> mp;

int find(int x)
{
	return f[x] == x ? x : f[x] = find(f[x]);
}

void solve()
{
	iire(n,m);	//读入
	ire(e);
	for(int i=1;i<=e;i++) iire(p[i].first,p[i].second);
	
	ire(q);	//读入询问
	for(int i=1;i<=q;i++)
	{
		ire(qq[i]);
		mp[qq[i]] = 1;
	}
	
	for(int i=1;i<=n+m;i++) f[i] = i, sz[i] = 1;
	
	for(int i=1;i<=e;i++)	//把所有的路都破坏后的情况
		if(!mp[i])
		{
			int a = find(p[i].first);
			int b = find(p[i].second);
			
			if(a != b)	//挂在编号大的点上
			{
				if(a > b)
				{
					f[b] = a;
					sz[a] += sz[b];
				}
				else
				{
					f[a] = b;
					sz[b] += sz[a];
				}
			}
		}

	int cnt = 0;	//统计一下把所有的路都破坏后的合法点的个数
	for(int i=1;i<=n;i++)
	{
		int fa = find(i);
		if(fa >= n+1 && fa <= n+m) cnt++;
	}
	ans[q] = cnt;
	
	for(int i=q;i>=1;i--)	//从后往前离线处理询问
	{
		int id = qq[i];
		
		int fa = find(p[id].first);
		int fb = find(p[id].second);
		
		int mn = min(fa,fb);
		int mx = max(fa,fb);
		
		if(mn >= n+1)	//最小的点都有发电站了
		{
			ans[i-1] = cnt;
			continue;
		}
		
		//一个有发电站,一个没有,此时合并时就要累加答案了
		if(mn < n+1 && mx >= n+1) cnt += sz[mn];
		
		if(fa != fb)	//在一个集合的时候就不用合并了!!!
		{
		    f[mn] = mx;
	    	sz[mx] += sz[mn];
		}
		
		ans[i-1] = cnt;
	}
	
	for(int i=1;i<=q;i++) cout<<ans[i]<<'\n';
}

signed main()
{
//	IOS;
	
	int t;
	t = 1;
//	ire(t);
//	cin>>t;
	while(t--)
	{
		solve();
	}
	
// 	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值