哎呦我去,比赛的时候差一点就写出来了…
wa了好几发,没想明白错在哪;
赛后想了一下,原来少了个判断,在一个集合的时候就不用合并了…我是sb
不过还是很开心的,第一次在比赛时能写出离线处理的题。
离线 + 思维倒推 + 并查集;
分析
首先读完题目我的第一个反应就是之前写过类似的,PAT的《红色警戒》;
因此引导我往并查集方面去想,但是《红色警戒》数据范围很小,每个询问都去暴力找连通块就行;
显然在这道题是行不通的,看一下数据范围5×1e5,范围比较大,每次询问可以带一个log;
但是并查集没有log,所以我就产生了离线处理,然后O(1)查询的想法;
然后模拟了一下发现从前往后询问并不好搞…后面的询问用不到前面的询问…
因此考虑从后往前处理询问,每次相当于是新建一条路,判断两个连通块的关系并且合并就行;
这样就能用到已经处理好的询问信息;
这里有个细节,由于发电场是编号比较大的点;
因此我们合并的时候可以把集合都挂在编号比较大的点;
这样find的时候就知道了集合是否有发电站!
代码
#include<iostream>
#include<queue>
#include<cstring>
#include<vector>
#include<stdio.h>
#include<map>
#include<algorithm>
#include<deque>
#include<stack>
#include<set>
// #include <unordered_map>
#include<math.h>
#include<string.h>
#define IOS ios::sync_with_stdio(false),cin.tie(0);
using namespace std;
#define pb push_back
#define coutl cout<<"------------"<<endl;
#define fi first
#define se second
#define ire(x) scanf("%d",&x)
#define iire(a,b) scanf("%d %d",&a,&b)
#define lre(x) scanf("%lld",&x)
#define llre(a,b) scanf("%lld %lld",&a,&b)
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define endl "\n"
#define PI acos(-1.0)
#define int long long
// #define double long double
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> PII;
typedef pair<double, int> PDI;
typedef pair<ll, ll> PLL;
typedef pair<double, double> PDD;
typedef pair<double, pair<int, double> > PDID;
typedef pair<char, char> PCC;
typedef pair<char, pair<int, int> > PCII;
typedef pair<int, pair<int, int> > PIII;
typedef pair<int, pair<int, pair<int, int> > > PIIII;
typedef pair<ll, pair<int, int> > PLII;
const int maxn = 3e6 + 7;
const int N = 2e6 + 7;
const int M = 4e6 + 7;
const int mod = 1e9 + 7;
const int inv = mod - mod/2;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;
const double pi = acos(-1);
const double eps = 1e-8;
ll gcd(ll a,ll b) {return b==0 ? a : gcd(b,a%b);}
ll lcm(ll a,ll b) {return a*b / gcd(a,b);}
ll qmi(ll a,ll b,ll p) {ll ans = 1; while(b) { if(b & 1) ans = ans * a % p; a = a * a % p; b >>= 1; } return ans;}
int lowbit(int x) {return x & (-x);}
int n,m,e,q;
int f[maxn];
int sz[maxn];
int vis[maxn];
int ans[maxn];
PII p[maxn];
int qq[maxn];
map<int,int> mp;
int find(int x)
{
return f[x] == x ? x : f[x] = find(f[x]);
}
void solve()
{
iire(n,m); //读入
ire(e);
for(int i=1;i<=e;i++) iire(p[i].first,p[i].second);
ire(q); //读入询问
for(int i=1;i<=q;i++)
{
ire(qq[i]);
mp[qq[i]] = 1;
}
for(int i=1;i<=n+m;i++) f[i] = i, sz[i] = 1;
for(int i=1;i<=e;i++) //把所有的路都破坏后的情况
if(!mp[i])
{
int a = find(p[i].first);
int b = find(p[i].second);
if(a != b) //挂在编号大的点上
{
if(a > b)
{
f[b] = a;
sz[a] += sz[b];
}
else
{
f[a] = b;
sz[b] += sz[a];
}
}
}
int cnt = 0; //统计一下把所有的路都破坏后的合法点的个数
for(int i=1;i<=n;i++)
{
int fa = find(i);
if(fa >= n+1 && fa <= n+m) cnt++;
}
ans[q] = cnt;
for(int i=q;i>=1;i--) //从后往前离线处理询问
{
int id = qq[i];
int fa = find(p[id].first);
int fb = find(p[id].second);
int mn = min(fa,fb);
int mx = max(fa,fb);
if(mn >= n+1) //最小的点都有发电站了
{
ans[i-1] = cnt;
continue;
}
//一个有发电站,一个没有,此时合并时就要累加答案了
if(mn < n+1 && mx >= n+1) cnt += sz[mn];
if(fa != fb) //在一个集合的时候就不用合并了!!!
{
f[mn] = mx;
sz[mx] += sz[mn];
}
ans[i-1] = cnt;
}
for(int i=1;i<=q;i++) cout<<ans[i]<<'\n';
}
signed main()
{
// IOS;
int t;
t = 1;
// ire(t);
// cin>>t;
while(t--)
{
solve();
}
// return 0;
}