代码随想录算法训练营第十三天|栈与队列part3|239滑动窗口最大值、347前k个高频元素

本文介绍了如何使用队列(单调队列和优先级队列)解决LeetCode中的滑动窗口问题,包括找到最大值和找出前K个高频元素的方法,重点在于数据结构的选择和操作优化。
摘要由CSDN通过智能技术生成

leetcode239.滑动窗口最大值

我一开始用的栈,思路是先把前k个数中最大的放进去,然后i从k+1开始,如果第i个数大于栈中的数,就入栈,小于等于就把栈顶的数再入一次栈,这样的问题是,如果窗口内的最大值是窗口中的第一个数,那么窗口向后滑动一步后,上一个窗口的最大值就不在现在的窗口内了,也就无从比较获得此时窗口中的最大值。

看了解析,解析里用的队列,queque在没有指定容器的情况下,deque就是默认底层容器,deque是双向队列。

解析里的队列保证对首一定是窗口内的最大值,后面的是小于最大值的数值,每次窗口移动,如果窗口前面的数正好是之前窗口的最大值,就从队列中去掉,如果窗口移动到的数大于队尾的数,就把队尾的数去掉,让进入窗口内的数进入队列,这样保证队列里的数是从队首到队尾的单调减,队首的数是窗口中最大的数,其余的数是次于最大数的数。

class Solution {
private:
    class MyQueue { //单调队列(从大到小)
    public:
        deque<int> que; // 使用deque来实现单调队列
        // 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
        // 同时pop之前判断队列当前是否为空。
        void pop(int value) {
            if (!que.empty() && value == que.front()) {
                que.pop_front();
            }
        }
        // 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
        // 这样就保持了队列里的数值是单调从大到小的了。
        void push(int value) {
            while (!que.empty() && value > que.back()) {
                que.pop_back();
            }
            que.push_back(value);

        }
        // 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
        int front() {
            return que.front();
        }
    };
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        MyQueue que;
        vector<int> result;
        for (int i = 0; i < k; i++) { // 先将前k的元素放进队列
            que.push(nums[i]);
        }
        result.push_back(que.front()); // result 记录前k的元素的最大值
        for (int i = k; i < nums.size(); i++) {
            que.pop(nums[i - k]); // 滑动窗口移除最前面元素
            que.push(nums[i]); // 滑动窗口前加入最后面的元素
            result.push_back(que.front()); // 记录对应的最大值
        }
        return result;
    }
};

leetcode347.前k个高频元素

本题设计三块内容:1.统计元素出现的频率 2.对频率排序 3.找出前K个高频元素

统计元素出现的频率使用map,对频率进行排序用的是优先级队列,优先级队列其实就是一个披着队列外衣的堆,本题使用小顶堆。

class Solution {
public:
    // 小顶堆
    class mycomparison {
    public:
        bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
            return lhs.second > rhs.second;
        }
    };
    vector<int> topKFrequent(vector<int>& nums, int k) {
        // 要统计元素出现频率
        unordered_map<int, int> map; // map<nums[i],对应出现的次数>
        for (int i = 0; i < nums.size(); i++) {
            map[nums[i]]++;
        }

        // 对频率排序
        // 定义一个小顶堆,大小为k
        priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;

        // 用固定大小为k的小顶堆,扫面所有频率的数值
        for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
            pri_que.push(*it);
            if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
                pri_que.pop();
            }
        }

        // 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
        vector<int> result(k);
        for (int i = k - 1; i >= 0; i--) {
            result[i] = pri_que.top().first;
            pri_que.pop();
        }
        return result;

    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值