leetcode239.滑动窗口最大值
我一开始用的栈,思路是先把前k个数中最大的放进去,然后i从k+1开始,如果第i个数大于栈中的数,就入栈,小于等于就把栈顶的数再入一次栈,这样的问题是,如果窗口内的最大值是窗口中的第一个数,那么窗口向后滑动一步后,上一个窗口的最大值就不在现在的窗口内了,也就无从比较获得此时窗口中的最大值。
看了解析,解析里用的队列,queque在没有指定容器的情况下,deque就是默认底层容器,deque是双向队列。
解析里的队列保证对首一定是窗口内的最大值,后面的是小于最大值的数值,每次窗口移动,如果窗口前面的数正好是之前窗口的最大值,就从队列中去掉,如果窗口移动到的数大于队尾的数,就把队尾的数去掉,让进入窗口内的数进入队列,这样保证队列里的数是从队首到队尾的单调减,队首的数是窗口中最大的数,其余的数是次于最大数的数。
class Solution {
private:
class MyQueue { //单调队列(从大到小)
public:
deque<int> que; // 使用deque来实现单调队列
// 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
// 同时pop之前判断队列当前是否为空。
void pop(int value) {
if (!que.empty() && value == que.front()) {
que.pop_front();
}
}
// 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
// 这样就保持了队列里的数值是单调从大到小的了。
void push(int value) {
while (!que.empty() && value > que.back()) {
que.pop_back();
}
que.push_back(value);
}
// 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
int front() {
return que.front();
}
};
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
MyQueue que;
vector<int> result;
for (int i = 0; i < k; i++) { // 先将前k的元素放进队列
que.push(nums[i]);
}
result.push_back(que.front()); // result 记录前k的元素的最大值
for (int i = k; i < nums.size(); i++) {
que.pop(nums[i - k]); // 滑动窗口移除最前面元素
que.push(nums[i]); // 滑动窗口前加入最后面的元素
result.push_back(que.front()); // 记录对应的最大值
}
return result;
}
};
leetcode347.前k个高频元素
本题设计三块内容:1.统计元素出现的频率 2.对频率排序 3.找出前K个高频元素
统计元素出现的频率使用map,对频率进行排序用的是优先级队列,优先级队列其实就是一个披着队列外衣的堆,本题使用小顶堆。
class Solution {
public:
// 小顶堆
class mycomparison {
public:
bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs) {
return lhs.second > rhs.second;
}
};
vector<int> topKFrequent(vector<int>& nums, int k) {
// 要统计元素出现频率
unordered_map<int, int> map; // map<nums[i],对应出现的次数>
for (int i = 0; i < nums.size(); i++) {
map[nums[i]]++;
}
// 对频率排序
// 定义一个小顶堆,大小为k
priority_queue<pair<int, int>, vector<pair<int, int>>, mycomparison> pri_que;
// 用固定大小为k的小顶堆,扫面所有频率的数值
for (unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++) {
pri_que.push(*it);
if (pri_que.size() > k) { // 如果堆的大小大于了K,则队列弹出,保证堆的大小一直为k
pri_que.pop();
}
}
// 找出前K个高频元素,因为小顶堆先弹出的是最小的,所以倒序来输出到数组
vector<int> result(k);
for (int i = k - 1; i >= 0; i--) {
result[i] = pri_que.top().first;
pri_que.pop();
}
return result;
}
};