深度学习pytorch(题型,笔记)

本文探讨了深度学习中PyTorch的应用,重点介绍风格迁移算法,利用卷积层特征实现图像风格转换。同时,讨论了数据增强的重要性,列举了几种常用方法,如Cutout和Mixup。此外,还介绍了迁移学习的概念及其在半监督学习、模型泛化能力提升等方面的应用。最后,提到了语义分割、转置卷积和损失函数的作用,以及SVM和GPU在机器学习中的角色。
摘要由CSDN通过智能技术生成

风格迁移:

图像风格迁移指的是将图像A的风格转换到图像B中去,得到新的图像,取个名字为new B,其中new B中既包含图像B的内容,也包含图像A的风格。

风格迁移算法的成功,其主要基于以下两点:

两张图像经过预训练好的分类网络,若提取出的高维特征(high-level)之间的欧氏距离越小,则这两张图像内容越相似

两张图像经过与训练好的分类网络,若提取出的低维特征(low-level)在数值上基本相等,则这两张图像越相似,换句话说,两张图像相似等价于二者特征的矩阵具有较小的弗罗贝尼乌斯范数

风格迁移使用卷积层的中间特征还原出对应这种特征的原始图像。具体过程就是:先选取一副原始图像,经过VGGNET计算后得到各个卷积层的特征。之后,根据这些卷积层的特征,还原出对应这种特征的原始图像.研究发现:浅层的还原效果往往比较好,卷积特征基本保留了所有原始图像中形状、位置、颜色、纹理等信息;深层对应的还原图像丢失了部分颜色和纹理信息,但大体保留原始图像中物体的形状和位置。

数据增强:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值