风格迁移:
图像风格迁移指的是将图像A的风格转换到图像B中去,得到新的图像,取个名字为new B,其中new B中既包含图像B的内容,也包含图像A的风格。
风格迁移算法的成功,其主要基于以下两点:
两张图像经过预训练好的分类网络,若提取出的高维特征(high-level)之间的欧氏距离越小,则这两张图像内容越相似
两张图像经过与训练好的分类网络,若提取出的低维特征(low-level)在数值上基本相等,则这两张图像越相似,换句话说,两张图像相似等价于二者特征的矩阵具有较小的弗罗贝尼乌斯范数
风格迁移使用卷积层的中间特征还原出对应这种特征的原始图像。具体过程就是:先选取一副原始图像,经过VGGNET计算后得到各个卷积层的特征。之后,根据这些卷积层的特征,还原出对应这种特征的原始图像.研究发现:浅层的还原效果往往比较好,卷积特征基本保留了所有原始图像中形状、位置、颜色、纹理等信息;深层对应的还原图像丢失了部分颜色和纹理信息,但大体保留原始图像中物体的形状和位置。
数据增强: