在市场上有很多商品的定价类似于 999 元、4999 元、8999 元这样。它们和 1000 元、5000 元和 9000 元并没有什么本质区别,但是在心理学上会让人感觉便宜很多,因此也是商家常用的价格策略。不过在你看来,这种价格十分荒谬。于是你如此计算一个价格 p(p 为正整数)的荒谬程度:
首先将 p看做一个由数字组成的字符串(不带前导0 );
然后,如果 p的最后一个字符是 0,就去掉它。重复这一过程,直到 p的最后一个字符不是 0;
记 p的长度为 a,如果此时 p 的最后一位是 5,则荒谬程度为 2a-1;否则为 2a。
例如, 850的荒谬程度为 3,而 880 则为 4,9999 的荒谬程度为 8。
现在,你要出售一样闲置物品,你能接受的定价在[l,r] 范围内,你想要给出一个荒谬度最低的价格。
输入格式:
输入文件的第一行包含一个正整数 t,表示测试数据的数目。
每个测试数据占单独的一行,包含两个空格分隔的正整数 l,r,表示定价的区间。
输出格式:
对于每个测试数据,在单独的一行内输出结果。如果荒谬度最低的价格不唯一,输出最小的那个。
样例">样例">样例">样例">样例">样例">样例">输入样例:
在这里给出一组输入。例如:
3
998 1002
998 2002
4000 6000
输出样例:
在这里给出相应的输出。例如:
1000
1000
5000
思路:分两部分判断:
1.当两个数字长度不一样时 最小 荒谬程度的长度肯定为1 此时只需要判断第一个数字为5存在情况. 例如: 7988->10010和7988->50050 此时的最小情况分别为8000和50000 需要注意左边的临界点和第一个数字为9的情况 如 9988->10100 为10000 和 9000->10001为9000
2.当两个数字长度一样时 从高位往低位找 找到数字不一样时 以和上面类似的情况 分类处理,注意点: 前面相同的数字不能改变,输出时也不要忘记加上.
我的代码:(未AC 错了一个样例 可能是我代码改动太多有地方写错了 或者 存在特殊样例 需要特判之类的 懒得改了 仅做参考)
#include<iostream>
#include<algorithm>
#include<map>
#include<vector>
#include<string>
#include<set>
#include<math.h>
#include<stdio.h>
#include<stack>
#include<queue>
//#include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
cin >> t;
while (t--)
{
long long l, r;
cin >> l >> r;
if (l == r)
{
cout << l << endl;
continue;
}
//scanf("%lld %lld", &l, &r);
string s1 = to_string(l);
string s2 = to_string(r);
int len1 = s1.size();
int len2 = s2.size();
if (len2 > len1)
{
string test = "5";
for (int i = 1; i < len1; i++)
{
test += '0';
}
long long tx = stoi(test);
if (tx >= l)
{
cout << tx << endl;
}
else
{
test += '0';
tx = stoi(test);
if (tx <= r)
{
cout << tx << endl;
}
else
{
tx /= 10;
test = to_string(tx);
test[0] = s1[0];
tx = stoi(test);
if (tx >= l)
{
cout << tx << endl;
}
else
{
if (s1[0] != '9')
{
test[0] += 1;
}
else
{
test[0] = '1';
test += '0';
}
cout << test << endl;
}
}
}
}
else
{
string test = "5";
for (int i = 1; i < len1; i++)
{
test += '0';
}
long long tx = stoi(test);
if (tx >= l && tx <= r)
{
cout << tx << endl;
}
else
{
for (int l1 = 0; l1 < len1; l1++)
{
if (s1[l1] < s2[l1])
{
char ch = s1[l1];
for (int l2 = l1 + 1; l2 < len1; l2++)
{
s1[l2] = '0';
}
s1[l1] = '5';
long long tx1;
tx1 = stoi(s1);
if (tx1 >= l && tx1 <= r)
{
cout << tx1 << endl;
}
else
{
s1[l1] = ch;
tx1 = stoi(s1);
if (tx1 >= l && tx1 <= r)
{
cout << tx1 << endl;
}
else
{
s1[l1] += 1;
cout << s1 << endl;
}
}
break;
}
}
}
}
}
return 0;
}