class Solution {
public:
vector<int> dailyTemperatures(vector<int>& temperatures) {
stack<int> s;
vector<int> result(temperatures.size(), 0);
s.push(0);
for (int i = 1; i < temperatures.size(); i++){
while(!s.empty()){
if (temperatures[s.top()] < temperatures[i]){
result[s.top()] = i - s.top();
s.pop();
}else{
break;
}
}
s.push(i);
}
return result;
}
};
这题中单调栈的工作方式就是构造一个单调递减的堆栈,为了记录下标距离,所以堆栈中存的是元素的下标,如果遇到了比栈顶元素更大的元素,就代表在遍历的过程中找到了大于栈顶元素的下一个元素,就将元素从栈顶弹出,并记录下标的距离。弹出所有小于新元素的元素后,将新的元素压入堆栈。
class Solution {
public:
vector<int> nextGreaterElement(vector<int>& nums1, vector<int>& nums2) {
stack<int> st;
vector<int> result(nums1.size(), -1);
unordered_map<int, int> map;
for (int i = 0; i < nums1.size(); i++) map[nums1[i]] = i;
st.push(0);
for (int i = 1; i < nums2.size(); i++){
if (nums2[st.top()] >= nums2[i]){
st.push(i);
}else{
while(!st.empty() && nums2[i] > nums2[st.top()]){
if (map.count(nums2[st.top()]) > 0){
result[map[nums2[st.top()]]] = nums2[i];
}
st.pop();
}
st.push(i);
}
}
return result;
}
};
这题笔者想了很久,最后发现自己题都没看懂,这题给的两个序列,nums1是nums2的子集,要求的是nums1中的元素在nums2中同元素右侧的第一个更大的元素,所以在这题中,首先将nums1的元素与下标变为一个unordered_map,在nums2中做与上一题类似的事,即构建一个单调递减的堆栈,不过这次触发记录的条件不再是单纯的元素大小,还有元素在map中是否存在,以及记录的不是距离而是元素本身。
class Solution {
public:
vector<int> nextGreaterElements(vector<int>& nums) {
stack<int> st;
vector<int> result(nums.size(), -1);
st.push(0);
for (int i = 1; i < 2 * nums.size(); i++){
int index = i % nums.size();
if (nums[index] <= nums[st.top()]){
st.push(index);
}else{
while(!st.empty() && nums[st.top()] < nums[index]){
result[st.top()] = nums[index];
st.pop();
}
st.push(index);
}
}
return result;
}
};
这题就与第一题几乎一样,只要把序列循环遍历两遍即可,随想录中是将序列拼接后对result数组切片,笔者就直接取余遍历两轮了。