483. 最小好进制

以字符串的形式给出 n , 以字符串的形式返回 n 的最小 好进制 。

如果 n 的 k(k>=2) 进制数的所有数位全为1,则称 k(k>=2) 是 n 的一个 好进制 。

示例 1:

输入:n = "13"
输出:"3"
解释:13 的 3 进制是 111。
示例 2:

输入:n = "4681"
输出:"8"
解释:4681 的 8 进制是 11111。
示例 3:

输入:n = "1000000000000000000"
输出:"999999999999999999"
解释:1000000000000000000 的 999999999999999999 进制是 11。
 

提示:

n 的取值范围是 [3, 1018]
n 没有前导 0

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/smallest-good-base
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路:等比数列累加求和与n比较。首先确定k的最大值可能取到什么程度,因为本题k的最小值为2,便以2为等比数列的公比,当2的(k+1)次方大于x时,所取的k+1便是k可取的最大值,然后将其带入循环中,取k=num^1.0/(h-1),然后在内循环中将其依次乘k左移一位,如果

其值等于x则返回改k值,否则双循环结束后,返回x-1

class Solution {
    public String smallestGoodBase(String n) {
    long x=Long.parseLong(n);
    long maxh=(long)(Math.log(x)/Math.log(2)+1);

    for(long h=maxh;h>=2;h--)
        {
            long k=(long)Math.pow(x,1.0/(h-1));
            long sum=0;
            for(int i=0;i<h;i++)
                {
                    sum=sum*k+1;
                    if(sum==x)
                        return String.valueOf(k);
                }
        }
        return Long.toString(x-1);
    
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值