yolov8-pose 的onnx 使用python推理 手势21关键点

话不多说,直接上代码:

import time
import cv2
import numpy as np
import onnxruntime
import colorsys

class YOLOv8:

    def __init__(self, path, conf_thres=0.7, iou_thres=0.7):
        self.conf_threshold = conf_thres
        self.iou_threshold = iou_thres
        # Initialize model
        self.initialize_model(path)
        # connect pose
        self.skeleton = [[1, 2], [2, 3], [3, 4], [4, 5],
                         [1, 6], [6, 7], [7, 8], [8, 9],
                         [1, 10], [10, 11], [11, 12], [12, 13],
                         [1, 14], [14, 15], [15, 16], [16, 17],
                         [1, 18], [18, 19], [19, 20], [20, 21]]

    def __call__(self, image,class_num):
        return self.detect_objects(image,class_num)

    def initialize_model(self, path):
        # self.session = onnxruntime.InferenceSession(path, providers=['CUDAExecutionProvider','CPUExecutionProvider'])
        self.session = onnxruntime.InferenceSession(path,onnxruntime.SessionOptions(), providers=['CUDAExecutionProvider'])
        # Get model info
        self.get_input_details()
        self.get_output_details()


    def detect_objects(self, image, class_num):
        input_tensor, ratio = self.prepare_input(image)

        # Perform inference on the image
        outputs = self.inference(input_tensor)
        # print(outputs)

        self.boxes, self.scores, self.class_ids, self.pose = self.process_output(outputs, ratio,class_num)
        return self.boxes, self.scores, self.class_ids, self.pose

    def prepare_input(self, image):
        self.img_height, self.img_width = image.shape[:2]

        input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        # Resize
        input_img, ratio = self.ratioresize(input_img)

        # Scale input pixel values to 0 to 1
        input_img = input_img / 255.0
        input_img = input_img.transpose(2, 0, 1)
        input_tensor = input_img[np.newaxis, :, :, :].astype(np.float32)

        return input_tensor, ratio

    def inference(self, input_tensor):
        start = time.perf_counter()
        outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor})
        outputs = np.array(outputs)
        return outputs

    def process_output(self, output, ratio, class_num):

        predictions = np.squeeze(output[0]).T

        # Filter out object confidence scores below threshold
        scores = np.max(predictions[:, 4:4+class_num], axis=1)
        predictions = predictions[scores > self.conf_threshold, :]
        scores = scores[scores > self.conf_threshold]

        if len(scores) == 0:
            return [], [], [], []

        # Get the class with the highest confidence
        class_ids = np.argmax(predictions[:, 4:4+class_num], axis=1)

        # Get bounding boxes for each object
        boxes = self.extract_boxes(predictions, ratio)

        # Apply non-maxima suppression to suppress weak, overlapping bounding boxes
        indices = self.nms(boxes, scores, self.iou_threshold)

        # Get pose
        modelpose = predictions[:, 4+class_num:]
        modelpose *= ratio

        return boxes[indices], scores[indices], class_ids[indices], modelpose[indices]

    def extract_boxes(self, predictions, ratio):
        # Extract boxes from predictions
        boxes = predictions[:, :4]

        # Scale boxes to original image dimensions
        # boxes = self.rescale_boxes(boxes)
        boxes *= ratio

        # Convert boxes to xyxy format
        boxes = self.xywh2xyxy(boxes)

        return boxes

    def rescale_boxes(self, boxes):

        # Rescale boxes to original image dimensions

        input_shape = np.array([self.input_width, self.input_height, self.input_width, self.input_height])
        boxes = np.divide(boxes, input_shape, dtype=np.float32)
        boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])

        return boxes

    def get_input_details(self):
        model_inputs = self.session.get_inputs()
        self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]

        self.input_shape = model_inputs[0].shape
        self.input_height = self.input_shape[2]
        self.input_width = self.input_shape[3]

    def get_output_details(self):
        model_outputs = self.session.get_outputs()
        self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]

    #
    def ratioresize(self, im, color=114):
        shape = im.shape[:2]
        new_h, new_w = self.input_height, self.input_width
        padded_img = np.ones((new_h, new_w, 3), dtype=np.uint8) * color

        # Scale ratio (new / old)
        r = min(new_h / shape[0], new_w / shape[1])

        # Compute padding
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))

        if shape[::-1] != new_unpad:
            im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)

        padded_img[: new_unpad[1], : new_unpad[0]] = im
        padded_img = np.ascontiguousarray(padded_img)
        return padded_img, 1 / r

    def nms(self, boxes, scores, iou_threshold):
        # Sort by score
        sorted_indices = np.argsort(scores)[::-1]

        keep_boxes = []
        while sorted_indices.size > 0:
            # Pick the last box
            box_id = sorted_indices[0]
            keep_boxes.append(box_id)

            # Compute IoU of the picked box with the rest
            ious = self.compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])

            # Remove boxes with IoU over the threshold
            keep_indices = np.where(ious < iou_threshold)[0]

            # print(keep_indices.shape, sorted_indices.shape)
            sorted_indices = sorted_indices[keep_indices + 1]

        return keep_boxes

    def compute_iou(self, box, boxes):
        # Compute xmin, ymin, xmax, ymax for both boxes
        xmin = np.maximum(box[0], boxes[:, 0])
        ymin = np.maximum(box[1], boxes[:, 1])
        xmax = np.minimum(box[2], boxes[:, 2])
        ymax = np.minimum(box[3], boxes[:, 3])

        # Compute intersection area
        intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)

        # Compute union area
        box_area = (box[2] - box[0]) * (box[3] - box[1])
        boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
        union_area = box_area + boxes_area - intersection_area

        # Compute IoU
        iou = intersection_area / union_area

        return iou

    def xywh2xyxy(self, x):
        # Convert bounding box (x, y, w, h) to bounding box (x1, y1, x2, y2)
        y = np.copy(x)
        y[..., 0] = x[..., 0] - x[..., 2] / 2
        y[..., 1] = x[..., 1] - x[..., 3] / 2
        y[..., 2] = x[..., 0] + x[..., 2] / 2
        y[..., 3] = x[..., 1] + x[..., 3] / 2
        return y


    def draw_detections(self, image, boxes, scores, class_ids,class_list,colors,pose_xyxy,pose_shape):
        tl = round(0.001 * (image.shape[0] + image.shape[1]) / 2) + 1  # line/font thickness

        num_kpts, steps = pose_shape[0], pose_shape[1]
        for i, (box, score, class_id,all_pose) in enumerate(zip(boxes, scores, class_ids,pose_xyxy)):
            # box
            x1, y1, x2, y2 = box
            c1, c2 = (int(x1), int(y1)), (int(x2), int(y2))
            cv2.rectangle(image, c1, c2, colors[class_id], 2)
            # label and score
            label = f"{class_list[class_id]}:{score:.2f}"
            tf = max(tl - 1, 1)  # font thickness
            t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
            c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
            cv2.rectangle(image, c1, c2, colors[class_id], -1, cv2.LINE_AA)  # filled
            cv2.putText(image, label, (c1[0], c1[1] - 2),0, tl / 3, [0, 0, 255], thickness=tf, lineType=cv2.LINE_AA)

            # pose
            for kid in range(num_kpts):
                x_coord, y_coord = all_pose[steps * kid], all_pose[steps * kid + 1]
                cv2.circle(image, (int(float(x_coord)), int(float(y_coord))), 2, (255, 0, 0), -1)
            for sk_id, sk in enumerate(self.skeleton):
                pos1 = (int(float(all_pose[(sk[0] - 1) * steps])), int(float(all_pose[(sk[0] - 1) * steps + 1])))
                pos2 = (int(float(all_pose[(sk[1] - 1) * steps])), int(float(all_pose[(sk[1] - 1) * steps + 1])))
                conf1 = all_pose[(sk[0] - 1) * steps + 1]
                conf2 = all_pose[(sk[1] - 1) * steps + 1]
                if conf1 > 0.5 and conf2 > 0.5:
                    cv2.line(image, pos1, pos2, (0, 256, 0), thickness=1)
        return image


if __name__ == "__main__":
    import os
    from tqdm import tqdm
    model_path = r"runs/train_pose/v8/weights/best.onnx"  # onnx path
    yolov8_detector = YOLOv8(model_path, conf_thres=0.3, iou_thres=0.45)
    img_dir_path = r"datasets/images/val" # img dir
    class_name = ["pose0", "pose1","pose2", "pose3","pose4", "pose5"] # model class

    pose_shape = (21,2) # pose shape
    class_num = len(class_name)
    hsv_tuples = [(x / class_num, 1., 1.) for x in range(class_num)]
    colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
    colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))


    for root,dir,vid_list in os.walk(img_dir_path):
        for img_name in tqdm([x for x in vid_list if x.endswith((".jpg",".png"))]):
            img_path = os.path.join(root,img_name)

            image = cv2.imread(img_path)

            boxes, scores, class_ids, pose_xyxy= yolov8_detector(image,class_num)
            # show
            image_with_detections = yolov8_detector.draw_detections(image, boxes, scores, class_ids,class_name,colors,pose_xyxy,pose_shape)
            result_img = cv2.resize(image_with_detections, (1152, 640))
            cv2.imshow("result", result_img)
            cv2.waitKey(0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值