- 博客(4)
- 收藏
- 关注
原创 Pytorch深度学习笔记④:Softmax回归的简洁实现
本文是《动手学深度学习课程》中Softmax回归简洁实现的笔记,仅用于个人学习记录。Softmax回归的简洁实现:首先导入需要使用的包,并设置好batch-size,以及得出训练集和测试集import torchfrom torch import nnfrom d2l import torch as d2lbatch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)接着可以定义模型,
2021-12-08 20:17:29 1504
原创 Pytorch深度学习笔记③:softmax回归
softmax回归初探最开始看见softmax回归这个名词,我的意识里想当然的把它当做是回归问题中的概念。其实不然,softmax回归是处理多分类任务时较为常用的方式。1.回归与分类首先是对于回归的理解:回归问题的输出多为自然区间R上的单连续数值的输出,并且是将其与真实值之间的区别作为误差。而对于分类的理解:分类问题的输出通常是多个,每一个输出代表着预测为第 i 类的置信度。2.softmax使用到的方法●softmax函数●one-hot编码●交叉熵损失函数●梯度下降法
2021-12-07 15:16:24 423
原创 Pytorch深度学习笔记②:线性回归模型的简单实现
一、整体思路利用深度学习Pytorch框架来实现线性回归模型的简洁实现二、代码框架首先,导入所需要的包,并生成数据集import numpy as npimport torchfrom torch.utils import datafrom d2l import torch as d2ltrue_w = torch.tensor([2, -3.4])true_b = 4.2features, labels = d2l.synthetic_data(true_w, true
2021-12-06 16:08:38 1618
原创 Pytorch深度学习笔记①:线性回归+基础优化方法
一、线性回归首先,在介绍线性回归之前,先用一个简化的模型作为引入。假设某地的房价影响因素有地理位置、人流量以及面积大小,分别记为x1、x2、x3。而房屋的最终成交价 y = w1x1 + w2x2 + w3x3 + b。此即为线性模型,给定了n维输入 X = [x1, x2, ... , xn]T,以及模型的n维权重 w = [w1, w2, ..., wn]T和标量偏差b,模型的输出即为输入的加权和:y = w1x1 + w2x2 + ... + wnxn + b 。由此可见,线性模型可.
2021-12-06 14:15:14 710
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人