- 博客(8)
- 收藏
- 关注
原创 大语言模型学习:提示词工程实战、优秀的提示工程案例
为了实现这个策略,我们将遵循以下步骤:第1步,提示生成(Prompt Generation):首先需要一个方法来生成一系列可能的提示。这可以通过向大模型提供一个关于任务或目标的描述,并要求它生成相关的提示来实现。第2步,提示评分(Prompt Scoring):对于生成的每个提示,我们需要一个评分函数来评估其有效性。评分可以根据一系列标准进行,例如清晰度、具体性和引发所需响应的可能性。
2025-08-09 17:15:55
1554
原创 微调实战3:使用指令微调的方法对FLAN-T5模型微调
使用conda创建新的虚拟环境,python=3.10(详见微调实战1、2)建议将flan-t5-base下载到本地,这里使用的是modelscope中的SDK方法进行下载在flan-t5环境中安装库依赖。
2025-08-08 08:30:00
281
原创 微调+推理部署实战2:ChatGLM3模型微调(附源代码)
下载ChatGLM3官方仓库,最好是使用conda新创建一个环境,python=3.10pip安装所需依赖进入微调文件夹,安装依赖。
2025-08-05 22:06:09
1469
原创 大语言模型学习:ubuntu大语言模型两种部署推理方式(附带源代码)
基于gpt4all和直接调用NVIDIA的API接口的大语言模型本地部署,附带完整源码
2025-08-04 15:42:22
520
原创 使用llama-factory框架进行微调
首先创建虚拟环境查看自己的CUDA版本,从官网下载对应的pytorch然后克隆llama-factory库从魔塔社区下载模型,这里我下载的是Qwen2.5-7B-Instruct模型。
2025-08-01 22:00:33
343
原创 微调实战1:Llama-3-8B-Instruct系列实战(手把手微调附源码)
对LLama进行了微调实战,从模型部署到微调,以及Web应用的设计
2025-08-01 21:11:22
1189
原创 大语言模型训练分词器(附源代码)
分词器技术包括分词和编码,分词技术主流包含BEP、WordPiece、Unigram。分词之后会生成一个词汇表。接下来介绍参考BELLE的方法进行分词。使用SentencePiece库来训练一个名为belle的BPE分词器→加载两个现有的分词器模型→合并词汇表→保存合并后的模型作为新的分词器模型。
2025-08-01 20:48:37
151
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅