- 博客(14)
- 收藏
- 关注
原创 代码随想录day2
滑动窗口可以理解为左右指针中间窗口的sum为两指针的“共同财产”,就是右指针一直在努力工作挣钱,好不容易共同财产大过target,记录一下两指针之间的距离,结果左指针就开始得瑟挥霍,不停花钱(往右移动),结果花钱一直花到sum又小过target,此时右指针不得不再次出来工作,不停向右移动,周而复始,最后取左右指针离得最近的时候。二维前缀和: s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];(2)下面定义的是行为r,列为c的二维数组,初始值为0。
2025-06-12 15:26:17
411
原创 代码随想录算法训练(64期)第一天
题目链接:704.二分查找文章讲解:视频讲解:左闭右闭左闭右开关于二分mid溢出问题解答:mid = (l + r) / 2时,如果l + r 大于 INT_MAX(C++内,就是int整型的上限),那么就会产生溢出问题(int类型无法表示该数)所以写成 mid = l + (r - l) / 2或者 mid = l + ((r - l) >> 1) 可以避免溢出问题对于二进制的正数来说,右移x位相当于除以2的x几次方,所以右移一位等于➗2,用位运算的好处是比直接相除的操作快严格的来说,双指针
2025-06-11 15:29:29
185
原创 李沐动手深度学习学习周报5
这个星期俩门考试主要在准备考试,深度学习学了门控循环单元GRU、长短期记忆网络LSTM、深层循环神经网络、双向循环神经网络。
2024-11-30 14:03:01
378
原创 李沐动手深度学习学习周报4
这个星期主要学习了现代卷积神经网络和循环神经网络,下星期考试较多,主要准备期末考试。① 在全局平均池化层(GAP)被提出之前,常用的方式是将feature map直接拉平成一维向量,但是GAP不同,是将每个通道的二维图像做平均,最后也就是每个通道对应一个均值。② 假设卷积层的最后输出是h × w × d 的三维特征图,具体大小为6 × 6 × 3,经过GAP转换后,变成了大小为 1 × 1 × 3 的输出值,也就是每一层 h × w 会被平均化成一个值,如下图所示。③ GPA优势:抑制过拟合。
2024-11-21 21:18:02
1954
原创 李沐动手深度学习学习周报3
本周主要学习了PyTorch神经网络基础,卷积层,深度卷积神经网络(AlexNet)。临近期末周,最近在准备考试。super().__init__() # 调用父类的__init__函数# 实例化多层感知机的层,然后在每次调用正向传播函数调用这些层net(X)# 构造一个没有任何参数的自定义层# 将层作为组件合并到构建更复杂的模型中# 带参数的图层。
2024-11-14 22:59:45
672
原创 linux配置pytorch\tensorflow操作手册
进入pytorch官网 https://pytorch.org/先启动 conda activate pytorch。这俩环境都已经安装成功在虚拟环境pytorch下面。然后conda list 就可以看见。conda list 看见已经安装。选择版本后在终端运行即可安装完成。查看有多少个虚拟环境。
2024-11-08 11:11:45
349
1
原创 小土堆深度学习入门学习周报1
文章目录摘要Python两大法宝Pytorch加载数据常用数据集两种形式路径直接加载数据Dataset加载数据TensorboardTensorboard 读图片TransformsTransforms用途transforms.Totensor使用需要Tensor数据类型原因常见的Transforms工具Normanize归一化Resize裁剪torchvisiontorchvision数据集介绍torchvision数据集下载查看CIFAR10数据集内容Tensorboard查看内容DataloaderT
2024-11-07 20:39:08
813
原创 李沐动手深度学习学习周报2
本周主要学习了深度学习的Softmax回归问题、图像分类数据集的代码实现、多层感知机、卷积层学了一部分,统计学习的三要素模型、策略、算法,模型的评估和选择、过拟合、感知机。return softmax(torch.matmul(X.reshape((-1,w.shape[0])),w)+b) # -1为默认的批量大小,表示有多少个图片,每个图片用一维的784列个元素表示。
2024-11-01 15:58:17
749
原创 李航统计学习学习周报1
感知机是二类分类的线性模型,属于判别模型.感知机学习旨在求出将训练数据进行线性划分的分离超平面.是神经网络和支持向量机的基础.模型:,w叫作权值向量,b叫做偏置,sign是符号函数.感知机的几何解释:wx+b对应于特征空间中的一个分离超平面S,其中w是S的法向量,b是S的截距.S将特征空间划分为两个部分,位于两个部分的点分别被分为正负两类.
2024-11-01 00:25:46
1443
原创 李沐动手学习深度学习学习周报1
本周是学习李沐动手学习深度学习的第一周,主要学习了深度学习基础知识(数据操作、数据预处理、线性代数、矩阵计算、自动求导、线性回归、优化算法)。① 如下图所示,X轴是不同的模式,最早的是符号学,然后概率模型、机器学习。Y轴是我们想做什么东西,感知是我了解这是什么东西,推理形成自己的知识,然后做规划。② 感知类似我能看到前面有个屏幕,推理是基于我看到的东西想象未来会发生什么事,根据看到的现象、数据,形成自己的知识,知道所有知识后能进行长远的规划,未来怎么做。
2024-10-25 11:50:59
2115
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人