二叉树是树形结构的一个重要类型。 许多实际问题抽象出来的数据结构往往是二叉树的形式,即使是一般的树也能简单地转换为二叉树,而且二叉树的存储结构及其算法都较为简单,因此二叉树显得特别重要。 二叉树(BinaryTree)由一个结点及两棵互不相交的、分别称作这个根的左子树和右子树的二叉树组成。下图中展现了五种不同基本形态的二叉树。
编辑 二叉树五种基本形态示意图 (a) 为空树。 (b) 为仅有一个结点的二叉树。 (c) 是仅有左子树而右子树为空的二叉树。 (d) 是仅有右子树而左子树为空的二叉树。 (e) 是左、右子树均非空的二叉树。排序二叉树特性如下:(1) 左子树上所有节点的值均小于它的根节点的值。(2) 右子树上所有节点的值均大于它的根节点的值。比如:我们要将数据【14, 12, 23, 4, 16, 13, 8, 3】存储到排序二叉树中,如下图所示:
编辑 排序二叉树示意图 排序二叉树本身实现了排序功能,可以快速检索。但如果插入的节点集本身就是有序的,要么是由小到大排列,要么是由大到小排列,那么最后得到的排序二叉树将变成普通的链表,其检索效率就会很差。 比如上面的数据【14, 12, 23, 4, 16, 13, 8, 3】,我们先进行排序变成:【3, 4, 8, 12, 13, 14, 16, 23】,然后存储到排序二叉树中,显然就变成了链表,如下图所示:
编辑 排序二叉树示意图平衡二叉树(AVL)为了避免出现上述一边倒的存储,科学家提出了“平衡二叉树”。在平衡二叉树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树。增加和删除节点可能需要通过一次或多次树旋转来重新平衡这个树。节点的平衡因子是它的左子树的高度减去它的右子树的高度(有时相反)。带有平衡因子1、0或 -1的节点被认为是平衡的。带有平衡因子-2或2的节点被认为是不平衡的,并需要重新平衡这个树。比如,我们存储排好序的数据【3, 4, 8, 12, 13, 14, 16, 23】,增加节点如果出现不平衡,则通过节点的左旋或右旋,重新平衡树结构,最终平衡二叉树如下图所示:
编辑 平衡二叉树示意图平衡二叉树追求绝对平衡,实现起来比较麻烦,每次插入新节点需要做的旋转操作次数不能预知。红黑二叉树红黑二叉树(简称:红黑树),它首先是一棵二叉树,同时也是一棵自平衡的排序二叉树。这些约束强化了红黑树的关键性质:从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。这样就让树大致上是平衡的。红黑树是一个更高效的检索二叉树,JDK 提供的集合类 TreeMap、TreeSet 本身就是一个红黑树的实现。红黑树的基本操作:插入、删除、左旋、右旋、着色。每插入或者删除一个节点,可能会导致树不在符合红黑树的特征,需要进行修复,进行 “左旋、右旋、着色” 操作,使树继续保持红黑树的特性。
编辑 一个典型的红黑树