代码随想录刷题笔记-Day32

1. 最大子序和

53. 最大子数组和icon-default.png?t=N7T8https://leetcode.cn/problems/maximum-subarray/

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组:是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

解题思路

最短的序列就是单个,用贪心的思路来做,首先需要找到局部最优。当累加到当前是负数的时候,就放弃累加,改当前为起始。考虑下这样能不能覆盖到最大子序列的情况。最大子序列的中间不会出现这个情况,因为出现了的话那么就说明有一部分可以舍弃得到更大的子序列。左右也不会,因为左右一定是负数,且累加到的时候一定小于0。

代码

class Solution {
    public int maxSubArray(int[] nums) {
        if (nums.length == 1)
            return nums[0];
        int max = nums[0];
        int cur = nums[0];
        for (int i = 1; i < nums.length; i++) {
            cur = Math.max(nums[i], cur + nums[i]);//对当前节点来说,最优解为加上和本身为开始的两种情况
            max = Math.max(cur, max);
        }

        return max;

    }
}

2. 买卖股票的最佳时机 II

122. 买卖股票的最佳时机 IIicon-default.png?t=N7T8https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-ii/

给你一个整数数组 prices ,其中 prices[i] 表示某支股票第 i 天的价格。

在每一天,你可以决定是否购买和/或出售股票。你在任何时候 最多 只能持有 一股 股票。你也可以先购买,然后在 同一天 出售。

返回 你能获得的 最大 利润 。

示例 1:

输入:prices = [7,1,5,3,6,4]
输出:7
解释:在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 
     这笔交易所能获得利润 = 5 - 1 = 4 。
      随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 
     这笔交易所能获得利润 = 6 - 3 = 3 。
      总利润为 4 + 3 = 7 。

示例 2:

输入:prices = [1,2,3,4,5]
输出:4
解释:在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出,
    这笔交易所能获得利润 = 5 - 1 = 4 。
     总利润为 4 。

示例 3:

输入:prices = [7,6,4,3,1]
输出:0
解释:在这种情况下, 交易无法获得正利润,所以不参与交易可以获得最大利润,最大利润为 0 。

解题思路

有个最基本的思想就是,抄底和高部套现。所以,一个基本的思路模型就是,找到一段递减序列的最低点,然后找到一段递增的最高。这就是局部最优解了,开始考虑这样的局部最优会不会影响整体最优,在局部最优内部是不会影响的,也就是需要考虑多个局部最优是否能够得到一个整体最优,也就是验证贪心算法的正确性。

一共局部最优的时候满足整体最优,假设第k个局部最优的时候满足整体最优:

  1. 第k个局部最优是不操作(已经遍历完了);
  2. 第k个局部最优有赚;

那么第k+1个可以进行讨论:

  1. k个不操作的情况下,k+1也不操作,整体最优
  2. k个局部有赚的情况下,k+1如果局部也有赚,进行分类讨论
    1. k+1 的卖出比k的卖出低或者相等的时候,整体是最优
    2. k+1的卖出比k的高的时候,right2-left1=right2-right1+right1-left1<=right2-left1+righ1-left1(因为left1是不会比righ1大的)所以一定是整体最优。

综上所述,可以贪心

注:每一个局部最优也是多步骤得到的,也需要讨论局部最优如何实现,也就是要找到一个最低买入,最高卖出,由于可以当如卖和买同时操作,在最低点买入,所以在遍历过程中,只需要发现没有大于上一个买入点,那就重置买入点,这样能找到最佳买入点,然后是卖出,求的是利润,在找最高点的过程中,可以把整个大利润,分为每天的小利润,这依旧是满足贪心的正确性的,一共连续非递减的部分,整个大利润正好等于每天的小利润。当开始降的时候,又开始了另一个局部最优的买入点的寻找。

代码

class Solution {
	public int maxProfit(int[] prices) {
		int profit = 0;
		int buy = prices[0];
		for (int i = 1; i < prices.length; i++) {
			if (prices[i] <= buy) {
				buy = prices[i];
			} else {
				profit += prices[i] - buy;
				buy = prices[i];
			}
		}
		return profit;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值