说在前面:
算法渣渣,再次打开电脑,学算法。
题目:
136. 只出现一次的数字(leetcode)
给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:
你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
方法1:哈希集(HashSet)
哈希集有个重要特性,其是不包含任何重复元素的无序集合。故当我们向哈希集添加重复元素时,如果添加失败,则移除当前试图向哈希集添加的元素。
代码:
class Solution {
public:
int singleNumber(vector<int>& nums) {
unordered_set<int> bobo;
int ans;
for(auto i : nums){
if(bobo.count(i)) bobo.erase(i);
else bobo.insert(i);
}
for(auto j : bobo) ans = j;
return ans;
}
};
补充:unordered_set
(来自csdn博主三时时光的unordered_set的介绍及使用)
方法2:按位异或操作符
按位:对值的二进制格式进行处理的操作符。
异或:假设有值甲乙,当甲乙值相等时,异或操作后结果为0(false),反之,为1(true)。
有一个数组,含有值:12 、7 、12,并含有一个变量甲,其值为0(先不要纠结为何要这么定义,这是为了了解异或操作符的神奇性质)
对数组进行遍历,且遍历所得的每一个值都和变量甲进行一次安慰异或操作。
——————第一次:
12:0 0 0 0 1 1 0 0
甲:0 0 0 0 0 0 0 0
异或
甲:0 0 0 0 1 1 0 0(值为12)
——————第二次
7:0 0 0 0 0 1 1 1
甲:0 0 0 0 1 1 0 0
异或
甲:0 0 0 0 1 0 1 1(值为11)
——————第三次
12:0 0 0 0 1 1 0 0
甲:0 0 0 0 1 0 1 1
异或
甲:0 0 0 0 0 1 1 1(值为7)
——————遍历结束
通过观察和结合按位异或操作性质,可以得到:一个值和0进行按位异或操作所得为该值,相同的两个值进行异或操作,所得为0.
按照这个性质,由于每个重复元素仅出现两次,故他们在遍历后会抵消,只剩下唯一元素与0
、、、、、、、(方法2为神奇小超的解题思路分享,我对其吸收借鉴,再加上自己的一些理解)
自己对这题异或操作的理解(异或运算,满足交换律和结合律):
12: 0 0 0 0 1 1 0 0 12: 0 0 0 0 1 1 0 0
7: 0 0 0 0 0 1 1 1 ----> 12:0 0 0 0 1 1 0 0
12:0 0 0 0 1 1 0 0 ----> 7: 0 0 0 0 0 1 1 1
0: 0 0 0 0 0 0 0 0 0: 0 0 0 0 0 0 0 0
最后再根据其性质,相同的相消(12与12相消),剩下唯一7的与0操作还是7.
代码:
class Solution {
public:
int singleNumber(vector<int>& nums) {
int ret = 0;
for (auto e: nums) ret ^= e;
return ret;
}
};
补充:C++中的for(auto a:b)用法
for(auto a:b)中b为一个容器,效果是利用a遍历并获得b容器中的每一个值,但是a无法影响到b容器中的元素。
for(auto &a:b)中加了引用符号,可以对容器中的内容进行赋值,即可通过对a赋值来做到容器b的内容填充。
、