- 博客(3)
- 收藏
- 关注
原创 计算机空战综述与空战游戏
为应对新时期空战任务所面临的环境高复杂性、博弈强对抗性、响应高实时性、信息不完整性、边界不确定性等一系列挑战,交叉融合人工智能理论与空战对抗技术,研发智能空战系统,将有望在下一代无人制空装备谱系中构建不对称“智能代差”,成为制胜未来空天战场的核心关键。从体系、应用及技术视角全面剖析智能空战的发展趋势,可以发现智能空战的不确定性、安全性、解释性、迁移性、协同性等是其应用落地的关键问题。计算机模拟空战是利用计算机技术和数学模型来模拟真实空战的过程,以提高飞行员的技能和战术水平,以及评估武器系统的性能和效能。
2024-01-03 18:35:15 401 1
原创 Transformer、VIT、SWin-TR、DETR的网络结构和改进思路
改进思路: - 提出了一种基于Transformer的渐进采样(Progressive Sampling)模块,该模块能够学习从哪里看图像,以缓解简单的tokens化方案带来的问题。这些模型的改进思路旨在提高模型的性能和精度,以更好地处理各种任务和数据集。不同的模型可能有不同的改进思路和方法,你可以根据具体的应用场景和需求选择合适的模型和改进方法。- SWin-TR: - 网络结构:用Swin Transformer代替原先的ViT,将UNet全部结构都换成Swin Transformer。
2024-01-03 18:20:09 487 1
原创 FCN、PSPNET、Deeplab-v3的网络结构
它通过将全连接层替换为卷积层,实现了对输入图像的像素级别的预测。FCN-32s是最简单的版本,它将VGG16网络的全连接层替换为卷积层,并在最后添加一个1x1的卷积层,输出通道数为类别数。4. 全局平均池化(Global Average Pooling):为了减小最终分类层的计算量,DeepLab-v3通常使用全局平均池化,将每个通道的特征图进行平均,得到一个固定大小的特征向量。通过这种级联的方式,FCN网络可以逐渐提取出不同尺度的特征信息,并将它们融合起来,从而实现对输入图像的像素级别的预测。
2023-12-25 12:02:27 159 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人