- 博客(5)
- 收藏
- 关注
原创 搜广推经典模型复现系列(4)阿里多兴趣推荐召回模型MIND 原理解析 + TensorFlow 复现实验总结(附代码)
模块论文贡献代码实现位置允许用户拥有多个兴趣向量动态路由过程的关键变换num_iterations=3 动态聚合引入目标 item 进行兴趣对齐解决海量 item 的训练效率。
2025-11-20 15:11:34
944
原创 搜广推经典模型复现系列(3)xDeepFM & FiBiNET 原理解析 + TensorFlow 复现实验总结(附代码)
【摘要】xDeepFM与FiBiNET是针对推荐系统中特征交叉问题的两大经典模型。xDeepFM通过压缩交互网络(CIN)显式构建高阶特征组合,每层明确计算向量外积实现结构化交叉;FiBiNET则结合SENet通道注意力机制(对特征embedding自适应加权)与双线性交互(为每对特征分配专属权重矩阵),实现细粒度特征交叉。
2025-11-14 16:37:28
964
1
原创 从 DSSM 到 BERT:构建一个端到端语义检索系统
本项目完成了从训练 → 向量化 → 检索的完整 DSSM 实现流程。下一步可以尝试:替换 DSSM backbone 为 BERT / DistilBERT;采用 Hard Negative Mining;与 ElasticSearch 集成实现端到端语义检索。🧠参考论文, 2013。
2025-11-08 19:59:58
769
原创 搜广推经典模型复现系列(2):DIN、DIEN 实验总结
本文介绍了DIN(深度兴趣网络)和DIEN(深度兴趣进化网络)的TensorFlow实现方法。重点阐述了DIN模型架构,包括用户/物品特征处理、Embedding层、激活单元计算兴趣权重、池化层整合兴趣表示等核心模块。提供了完整的TensorFlow代码实现,包含特征工程、模型构建、训练评估等步骤。实验结果显示,在电影推荐场景下,DIN模型测试集AUC达到0.7511。文章指出DIN模型对用户行为序列长度敏感,batch size和序列截断长度对效果影响较大。该实现可作为推荐系统序列建模的实用参考方案。
2025-10-28 20:08:43
356
原创 搜广推经典模型复现系列(1):DeepCrossing、Wide&Deep、DeepFM 实验总结
本文记录了DeepCrossing、Wide&Deep和DeepFM三种经典CTR预测模型的复现实验。实验采用TensorFlow2.x框架,基于MovieLens数据集,重点实现了各模型的核心结构:DeepCrossing通过残差网络处理特征组合;Wide&Deep结合线性模型与深层网络;DeepFM融合因子分解机和深度网络。实验结果显示,DeepFM表现最优(测试AUC 0.6882),验证了其同时捕捉低阶和高阶特征交互的优势。复现过程详细展示了数据处理、特征工程和模型构建方法,为初学者
2025-10-27 22:10:51
725
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅