Day 03 Python Study(数据分析)

第一章 numpy

numpy数组

前提:import numpy as np

1.np.reshape(a,b)重塑数组大小维度np.loadtxt(frame(文件路径),dtype(文件类型),delimiter(分隔符),skiprows(跳过几行),usecols(作用列),unpack(是否将属性写入不同数组))

2.np.where(三位运算符)

3.假入t是一个数组,那么t.clip(10,20)将小于10的为10。大于20的都为20

t[:2]  :前两列 ;  t[2:]从第二列之后 ;

4.nan是float类型,当读取文本文件有缺失,或者无穷大减去无穷大时会变成nan

5.a=b,a=[:b] 他们进行数据变化时跟a有关,但是copy()无关

6.水平拼接数组np.hstack()      竖直拼接数组np.vstack()

第二章 pandas

前提:import pandas as pd

t2 = pd.DataFrame(np.arange(12).reshape(3, 4), index=["a", "b", "c"], columns=["x", "y", "z", "w"])
print(t2.shape)                    #数组形状
print(t2.index)                    #数组行索引
print(t2.columns)                  #数组列索引
print(t2.dtypes)                   #数组各列类型
print(t2.head())                   #数组前几个文件
print(t2.tail(2))                  #数组后几个行
print(t2.info())                   #数组信息
print(t2.describe())               #数组的一些值,比如标准差,均值等pd.join 按行进行合并,

pd.merge 按列进行合并
#df.merge    方式:inner:交集,outer:并集,left:左边为准,right : 右边为准
data1 = df.groupby(by="City").count()["Brand"].sort_values(ascending=False)[:25]
#表示从数据中以City为标准化成几组,然后按Brand为依据进行排序,使用ascending=Flase将升序改为降序,取前25个
df.index                           #显示索引
df.index= ['x','y']                #将索引修改
df.reindex(list("abcdef"))         #将索引修改
df.set_index("Country",drop=False) #将某一列作为索引,Flase表示不保留原来的列
#把分开的时间字符串通过periodIndex的方法转化为pandas的时间类型
period = pd.PeriodIndex(year=df["year"],month=df["month"],day=df["day"],hour=df["hour"],freq="H")
df["datetime"] = period
df = df.resample("M").mean()    #变为以月为单位
data = df ["123"].dropna()      #去除某一列缺失值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值