目录
一.栈
1.1栈的基本概念
栈(stack)是只允许在一端进行插入或删除操作的线性表。
栈顶:允许插入和删除的一端。
栈底:不允许插入和删除的一端。
栈的特点是后进先出
注:n个不同元素进栈,出栈元素不同排列个数为
上述公式称为卡特兰(Catalan)数
1.2栈的基本操作
创销
InitStack(&S):初始化栈。构造一个空栈 S,分配内存空间。
DestroyStack(&S):销毁栈。销毁并释放栈 S 所占用的内存空间。增删
Push(&S,x):进栈,若栈S未满,则将x加入使之成为新栈顶。
Pop(&S,&x):出栈,若栈S非空,则弹出栈顶元素,并用x返回。查 (只是读栈顶元素,Pop是删除栈顶元素)
GetTop(S, &x):读栈顶元素。若栈 S 非空,则用 x 返回栈顶元素
其他常用操作:
StackEmpty(S):判断一个栈 S 是否为空。若S为空,则返回true,否则返回false。
1.3.顺序栈
1.3.1.顺序栈的定义
// 顺序栈,与顺序表类似
#define MaxSize 10; //定义栈中元素最大个数
typedef struct{
ElemType data[MaSize]; //静态数组存放栈中元素
int top; //栈顶置针。
}SqStack;
void testStack(){
SqStack L; //声明一个顺序栈(分配空间)
}
//这里使用声明的方式分配内存空间,并没有使用malloc函数。
//会在会在销毁函数(top=-1)结束之后又系统自动回收。
1.3.2.顺序栈的初始化
#define MaxSize 10; //定义栈中元素最大个数
typedef struct{
ElemType data[MaxSize]; //用静态数组存放栈中元素
int top; //栈顶置针
}SqStack;
//初始化顺序栈
bool InitStack(SqStack &S){
S.top=-1; //初始化栈顶置针
return true;
}
void testSqStack(){
SqStack S; //声明一个顺序栈(分配空间)
InitStack(S);
}
//判断栈是否为空栈
bool StackEmpty(SqStack S){
if(S.top==-1)
return true;
else
return false;
}
1.3.3.进栈
top 初始是-1, 所以要先加1,然后再进栈
思考:如果top初始为0呢,在 1.3.6栈的另一种表达方式实现
#define MaxSize 10; //栈中元素最大个数
typedef struct{
ElemType data[MaxSize]; //静态数组存放到栈中
int top; //栈顶置针
}SqStack;
//新元素入栈
bool push(SqStack S,ElemType x){
if(S.top==MaxSize-1) //栈满返回false
return false;
S.top=S.top+1; //先加1
S.data[S.top]=x; //再入栈
return false;
}
注:
S.top=S.top+1;
S.data[S.top]=x;
等价于
S.data[++S.top]=x;
1.3.4.出栈
top 初始是-1的,top是直接指向栈顶元素的,所以先出栈,然后top-1
思考:如果top初始为0呢,在 1.3.6栈的另一种表达方式实现
#define MaxSize 10; //栈中元素最大个数
typedef struct{
ElemType data[MaxSize]; //静态数组存放栈中元素
int top; //栈顶指针
}SqStack;
//出栈操作
bool Pop(SqStack &S,Elemtype &x){
if(S.top==-1) //栈为空返回false
return false;
x=S.data[S.top]; //先出栈
S.top=S.top-1; //再减1
}
注:
x=S.data[S.top];
S.top=S.top-1;
等价于
x=S.data[S.top--];
1.3.5.读栈顶元素
bool GetTop(SqStack S,ElemType &x){
if(S.top==-1) //栈空报错
return false;
x=S.data[S.top]; //x记录栈顶元素
return true;
}
1.3.6.栈的另一种表达方式
栈顶初始化为0。
当栈满了,top=MaxSize
重点思考:top指向栈头元素的上一个。
Push:是先入栈,top再加1;
Pop:top先减1,再出栈。
#define MaxSize 10;
typedef struct{
ElemType data[MaxSize];
int top;
}SqStack;
//初始化栈
bool InitStack(SqStack &S){
S.top=0; //指向0
}
void testStack(){ 判断栈空
SqStacks;//声明一个顺序栈
InitStack(S);
}
//判断栈为空
bool StackEmpty(SqStack S){
if(S.top==0)
return true;
else
return false;
}
//入栈操作
bool Push(SqStack &S,ElemType x){
if(S.top == MaxSize) //栈满,报错
return false;
S.data[S.top++]=x; //先入栈,后加1
return true;
}
//出栈操作
bool Pop(Sqstack &S,ElemType &x){
if(S.top==0) //栈空,报错
return false;
x=S.data[--S.top]; //先减1,后出栈
return true;
}
1.3.7.共享栈
两个栈共享同一片空间就是共享栈
其中判别栈满条件是top0+1=top1
// 共享栈
#define MaxSize 10;
typedef struct{
ElemType data[MaxSize];
int top0; //0号栈顶指针
int top1; //1号栈顶指针
}SqStack;
bool InitStack(SqStack &s){
s.top0=-1; //初始化栈指针
s.top0=MaxSize;
return true;
}
1.4.链栈的实现
链栈,其进栈操作其实对应于链表中对头结点的"后插"操作,出栈操作对应于链表中对头结点的"后删"操作,就是将链头的一端看作栈顶的一端。
//链栈的定义和链表的定义是相同的,只是命名不同
typedef struct Linknode{
ElemType data;
struct Linknode *next;
}LiStack; //栈类型定义
//带头结点
bool InitStack(LiStack &L){
L=(Linknode *)malloc(sizeof(Linknode));
if(L==NULL)
return false; //内存不足,分配失败
L->next=NULL;
return true;
}
//判断时候为空栈
bool Empty(LinkList L){
return(L->next == NULL);
注:链栈基本操作同链表
//带头结点,S栈中插入数据
bool Push(LiStack &S, int x){
Linknode *s=(Linknode *)malloc(sizeof(Linknode)); //要入栈的节点
if (s == NULL) {
return false; // 内存分配失败
}
s->data=x;
s->next=S->next;
S->next=s;
return true;
}
//带头结点
bool Pop(LiStack &S, int &e) {
if (L->next == NULL) { // 栈空
return false;
}
Linknode *q = S->next;
e = q->data;
S->next = q->next;
free(q);
return true;
}
//不带头节点思考,参考链表
二.队列
2.1.队列的基本概念
队列(Queue)是只允许在一端进行插入,在另一端删除的线性表
重要术语:队头(删除的一端)、队尾(插入的一端)、空队列
队列的特点:先进先出
First In First Out(FIFO)
2.2.队列的基本操作
创销
InitQueue(&Q):初始化队列,构造一个空队列Q。
DestroyQueue(&Q):销毁队列。销毁并释放队列Q所占用的内存空间。增删
EnQueue(&Q,x):入队,若队列Q未满,将x加入,使之成为新的队尾。
DeQueue(&Q,&x):出队,若队列Q非空,删除队头元素,并用x返回。查
GetHead(Q,&x):读队头元素,若队列Q非空,则将队头元素赋值给x。
其他常用操作:
QueueEmpty(Q):判队列空,若队列Q为空返回true,否则返回false
2.3.队列的顺序实现
2.3.1 队列定义
#define MaxSize 10; //定义队列最大长度个数
typedef struct{
ElemType Data[MaxSize]; //用静态数组存放队列元素
int front,rear; //对头指针入队尾指针
}SqQueue;
void testQueue(){
SqQueue Q; //声明一个队列(顺序存储)
// 其他操作
}
2.3.2 队列初始化
队头指针与队尾指针初始指向0
#define MaxSize 10; //定义队列中元素的最大个数
typedef struct{
ElemType data[MaxSize]; //用静态数组存放队列元素
int front,rear; //队头和队尾指针
}SqQueue;
//初始化队列
InitQueue(SqQueue &Q){
//队头和队尾指针指向0
Q.frnot=Q.rear=0;
}
void testQueue(){
SqQueue Q; //声明一个队列
InitQueue(Q);
//其他操作
}
//判断空队列
bool EmptyQueue(SqQueue Q){
if(Q.front==Q.rear) //队空条件
return true;
else
return false;
}
2.3.3 入队操作
队头指针与队尾指针初始指向0,数据是先入队,rear再(rear+1)%MaxSize
#define MaxSize 10;
typedef struct{
ElemType data[MaxSize];
int front,rear;
}SqQueue;
//入队
bool enQueue(SqQueue &Q,ElemType x){
if((Q.rear+1)%MaxSize==Q.front)//判段队列满
return false;
Q.data[Q.rear]=x; /新元素插入队尾
Q.rear=(Q.rear+1)%MaxSize; //队尾指针加1取模
return false;
}
循环队列队满条件是:队尾指针的再下一个位置是队头,即(Q.rear+1)%MaxSize==Q.front
为什么需要不能再插入一个元素,并且使rear和front指向同一个元素呢?
初始化队列,rear指针与front指针就是指向同一个位置,判断空队列也是rear指针与front指针指向同一个位置。如果再插入一个元素rear和front指针指向同一个位置,判满与判空混淆,必须牺牲一个存储单元
2.3.3 出队操作与获得队头元素
队头指针与队尾指针初始指向0,数据是先出队,front再(front+1)%MaxSize
//出队(删除一个队头元素,并用x返回)
bool DeQueue(SqQueue &Q,ElemType &x){
if(Q.front==Q.rear) //当队头指针与队尾指针再次指向同一个位置,队空
return false;
x=Q.data[Q.front];
Q.front=(Q.front+1)%MaxSize; //队头指针后移
return true;
}
// 获得队头元素
bool GetHead(SqQueue &Q,ElemType &x){
if(Q.front==Q.rear) //队空
return false;
x=Q.data[Q.front];
return true;
}
2.3.4 判断队列已满/已空
方案一:
判断队列已满的条件:队尾指针的再下一个位置是队头
(Q.rear+1)%MaxSize==Q.front
队空条件:队头指针与队尾指针指向同一个地方Q.rear=Q.front
队列元素个数:(rear+MaxSize-front)%MaxSize
方案二:
#define MaxSize 10
typedef struct{
ElemType data[MaxSize];
int front,rear;
int size; //用size表示当前队列的长度,当入队成功size++,出队成功size--
}SqQueue;
直接用size来判断是否是队空,队满
方案三:
#define Maxsize 10
typedef struct{
ElemType data[Maxsize];
int front,rear;
int tag; //记录最近进行的是删除/插入
//每次删除成功,都令tag=0,每次插入成功时,都令tag=1;
} SqQueue;
只有删除操作,才能导致队空,只有插入操作,才能导致队满
在考试时,也可能出现rear指向队尾元素的情况,如下图所示:
rear先往后移动,在入队
判满也不能用与判空相同的条件, 如下图:
可以牺牲一个存储空间,即队空时,队尾指针在队头指针后面一个位置,队满时,队尾指针在队头指针后面两个位置。
//代码如下
//初始化队列
void InitQueue(SqQueue &Q) {
Q.front = 0;
Q.rear =MaxSze-1;
}
//判空
bool QueueEmpty(SqQueue Q){
if((Q.rear+1)%MaxSize==Q.front) //队空条件
return true;
else
return false;
//判满
bool QueueFull(SqQueue Q){
if((Q.rear+2)%MaxSize==Q.front) //队满条件
return true;
else
return false;
2.4.队列的链式实现
2.4.1 队列定义
typedef struct LinkNode{ //链式队列结点
ElemType data;
strcut LinkNode *next;
}LinkNode;
typedef struct{ //链式队列
LinkNode *front,*rear; //队列的对头和队尾指针
}LinkQueue;
链队列--链式存储实现的队列
2.4.2 队列初始化
带头结点
typedef struct LinkNode{
ElemType data;
struct LinkList *next;
}LinkNode;
typedef struct{
struct LinkNode *front,*rear;
}LinkQueue;
//初始化(带头结点)
bool InitQueue(LinkQueue &Q){
//初始化时,front,rear都指向头结点
Q.front=Q.rear=(LinkNode *)malloc(sizeof(LinkNode));
Q.front->next=NULL;
return true;
}
//判断队列为空
bool IsEmpty(LinkQueue Q){
if(Q.front==Q.rear)
return true;
else
return false;
}
void testLinkQueue(){
LinkQueue Q; //声明一个队列
InitQueue(Q); //初始化队列
//后续操作
}
不带头结点
//初始化操作(不带头结点)
bool InitQueue(LinkQueue &Q){
Q.front=NULL;
Q.rear=NULL;
return true;
}
//判断队列是否为空(不带头节点)
bool IsEmpty(LinkQueue Q){
if(Q.front==NULL)
return true;
else
return false;
}
2.4.3 入队
带头结点
//新元素入队(带头结点)
void EnQueue(LinkQueue &Q ElemType x){
LinkNode *s=(LinkNode *)malloc(sizeof(LinkNode));
s->data=x;
s->next=NULL;
Q.rear->next=s; //新结点插入到rear之后
Q.rear=s; //修改表尾指针
}
不带头结点
//新元素入队(不带头结点)
void EnQueue(LinkQueue &q,ElemType x){
LinkNode *s=(LinkNode *)malloc(sizeof(LinkNode));
s->data=x;
s->next=NULL;
if(Q.rear==NULL){ //在空队列中插入第一个元素
Q.front=s; //修改怼头队尾指针
Q.rear=s;
}else{
Q.rear->next=s; //新结点插入到rear结点后边
Q.rear=s; //修改rear指针,指向队尾
}
}
2.4.4 出队
带头结点
//队头元素出栈
bool DeQueue(LinkQueue &Q, ElemType &x){
if(Q.front==Q.rear)
return false; //空队
LinkNode *p=Q.front->next;
x=p->data; //用变量x返回队头元素
Q.front->next=p->next; //修改头结点的next指针
if(Q.rear==p) //此次是最后一个结点出队
Q.rear=Q.front; //修改rear指针,改成rear=front,表示空队
free(p); //释放资源
return true;
}
不带头结点
//队头元素出队(不带头结点)
bool DeQueue(LinkQueue &Q,ElemType &x){
if(Q.front==NULL) //空队
return false;
LinkNode *p=Q.front; //p指向出队结点,队头
x=p->data; //用变量x返回队头元素
Q.front=p->next; //修改front指针
if(Q.rear==p){ //如果出队的是最后一个结点
Q.front=NULL; //front,rear指向NULL
Q.rear==NULL;
}
free(p); //释放资源
return true;
}
对于顺序存储的队列,存储空间都是预分配的,预分配的存储空间耗尽,则队满。而对链式存储而言,一般不会对满,除非内存不足。
2.5.双端队列
栈:只允许从一端插入和删除的线性表
队列:只允许从一端插入、另一端删除的线性表
双端队列:只允许从两端插入、两端删除的线性表
双端队列还可以分为:
输入受限的双端队列:只允许从一端插入、两端删除的线性表
输出受限的双端队列:只允许从两端插入、一端删除的线性表
对于栈而言,若数据元素输入序列为 1,2,3,4,合法的出栈序列,可用卡特兰数计算:
三.栈的应用
3.1.括号匹配
在代码中出现的括号必须是成对的,这就是括号匹配的问题。最后出现的左括号最先被匹配(LIFO),如图所示
遇到左括号就入栈遇到右括号,就 “消耗”一个左括号。
所有括号都能两两配对。
当前扫描到的右括号与栈顶左括号不匹配
算法流程图:
#define MaxSize 10;
typedef struct{
char data[MaxSize];
int top;
}SqStack;
//初始化栈
void InitStack(SqStack &S){
S.top=-1;
return false;
}
//判断栈为空
bool StackEmpty(SqStack S){
if(S.top==-1)
return true;
else
return false;
}
//入栈操作
bool Push(SqStack &S,char x){
if(S.top==MaxSize-1)
return false;
S.data[++S.top]=x; //top先加1,元素再入栈
return true;
}
//出栈操作
bool Pop(SqStack &s,char &x){
if(S.top==-1)
return false;
x=S.data[S.top--]; //先出栈top再减1
return true;
}
//括号匹配
bool bracketCheck(char str[],int length){
SqStack S;
InitStack(S); //初始化一个栈
//循环遍历str数组
for(int i=0;i<length;i++){
if(str[i]=='(' || str[i]=='[' || str[i]=='{'){
Push(S,str[i]); //扫描到左括号入栈
} else{
//扫描的右括号
if(StackEmpty(S)) //栈底为空返回
return false;
char topElem;
Pop(S,topElem); //栈顶元素出栈
if(str[i]==')' && topElem!='(')
return false; //如果右括号为) 栈顶元素不为(返回false
if(str[i]==']' && topElem!='[')
return false;
if(str[i]=='}' && topElem!='{')
return false;
}
}
return StackEmpty(S); //检索完全部括号后,栈空说明匹配成功
}
匹配失败情况:
①左括号单身②右括号单身③左右括号不匹配
3.2.表达式求值
3.2.1.三种算数表达式
中缀表达式
运算符在两个操作数的中间
后缀表达式(逆波兰表达式,Reverse Polish notation)
运算符在两个操作数后面
前缀表达式(波兰表达式,Polish notation)
运算符在两个操作数前面
3.2.2 中缀表达式转后缀表达式
中缀转后缀的手算方法:
① 确定中缀表达式中各个运算符的运算顺序
② 选择下一个运算符,按照「左操作数 右操作数 运算符」的方式组合成一个新的操作数
③ 如果还有运算符没被处理,就继续 ②
“左优先”原则:只要左边的运算符能先计算,就优先算左边的。可保证运算顺序唯一
用栈实现后缀表达式的计算:
①从左往右扫描下一个元素,直到处理完所有元素
②若扫描到操作数则压入栈,并回到①;否则执行③
③若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到①
扫描到操作数则压入栈中:
扫描到运算符则,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶:
后出栈的是左操作数.以此类推:
遇到“-”号,将两个栈顶元素取出,执行减法运算,再压回栈中。
最后得到中缀表达式:若表达式合法,则最后栈中只会留下一个元素,就是最终结果。
3.2.3 中缀表达式转前缀表达式
中缀转前缀的手算方法:
① 确定中缀表达式中各个运算符的运算顺序
② 选择下一个运算符,按照「运算符 左操作数 右操作数」的方式组合成一个新的操作数
③ 如果还有运算符没被处理,就继续 ②
“右优先”原则:只要右边的运算符能先计算,就优先算右边的。可保证运算顺序唯一
用栈实现前缀表达式的计算:(与后缀表达式相反)
①从右往左扫描下一个元素,直到处理完所有元素
②若扫描到操作数则压入栈,并回到①;否则执行③
③若扫描到运算符,则弹出两个栈顶元素,执行相应运算,运算结果压回栈顶,回到①
3.2.4计算机实现中缀表达式转后缀表达式
初始化一个栈,用于保存暂时还不能确定运算顺序的运算符。
从左到右处理各个元素,直到末尾。可能遇到三种情况:
① 遇到操作数。直接加入后缀表达式。
② 遇到界限符。遇到“(”直接入栈;遇到“)”则依次弹出栈内运算符并加入后缀表达式,直到
弹出“(”为止。注意:“(”不加入后缀表达式。
③ 遇到运算符。依次弹出栈中优先级高于或等于当前运算符的所有运算符,并加入后缀表达式,
若碰到“(” 或栈空则停止。之后再把当前运算符入栈。
遇到操作数,直接加入后缀表达式。遇到运算符,由于栈空,直接将运算符入栈
遇到运算符(“-”)时,需要依次弹出栈中优先级高于或等于当前运算符的所有运算符。由于“+”号和"-"号优先级相同,所以把“+”号弹出,并且把“-”号放入栈中。
继续扫描到“*”号运算符,由于当前栈中的运算符是“-”号,比“*”号优先级低,所以不弹出栈。
所以“*”入栈,操作数D直接放到后缀表达式中。
接下来遇到“/”,由于“*”号和“/”运算优先级相等,所以* 出栈,
以此类推
带有括号的与上面一样。
3.2.5用栈实现中缀表达式的计算
用栈实现中缀表达式的计算:
初始化两个栈,操作数栈和运算符栈
若扫描到操作数,压入操作数栈
若扫描到运算符或界限符,则按照“中缀转后缀”相同的逻辑压入运算符栈(期间也会弹出
运算符,每当弹出一个运算符时,就需要再弹出两个操作数栈的栈顶元素并执行相应运算,
运算结果再压回操作数栈)
操作数栈 对应 后缀表达式求值
运算符栈 对应 中缀转后缀
具体过程演示:
操作数放到操作数栈中,由于运算符栈空,所以“+”号可以直接入栈。
扫描到“-”号时,按照“中缀转后缀”的逻辑,由于运算符栈顶的“+”号和当前运算符“-”号优先级相同,所以弹出“+”号,并弹出操作数栈中的两个操作数,先出栈的为右操作数。
并且把当前运算符“-”号压入栈中。
按照规则继续操作,当遇到“/”号时,会把运算符栈的栈顶元素”*“弹出。
并弹出两个操作数,进行乘法运算,并压回操作数栈的栈顶。
遇到“E”,直接压入操作数栈。
遇到"+"号,需要将”/“和“-”号依次弹出。
弹出“/”号,并将两个操作数出栈进行运算,最后压回栈顶。
最后让“F”入栈,并将运算符栈的运算符"+"号弹出,让操作数栈的两个栈顶操作数进行加法运算。
3.3 递归
其算法的内部逻辑如下图所示,每进入一层递归,就将递归调用所需信息压入栈顶。计算阶乘
#include<stdio.h>
//计算正整数n!
int factorial(int n){
if(n==0 || n==1)
return 1;
else
return n*factorial(n-1);
}
int main(){
int a;
printf("请输入要求的阶乘:");
scanf("%d",&a);
int b=factorial(a);
printf("%d",b);
}
其算法的内部逻辑如下图所示,每进入一层递归,就将递归调用所需信息压入栈顶。
每退出一层递归,就从栈顶弹出相应信息,当n=1时,return 1,并从栈顶弹出相应信息。第9层的n=2,所以return n*factorial(1),即2*1,以此类推,到第1层时,返回的则是10*9!(9的阶乘),即10的阶乘。
注意:若有太多的递归层,就有可能导致栈溢出,因为内存有限,系统开辟的函数调用栈也是有上限的。 所以这也可以解释,为什么递归次数越多时间复杂度越高。
再例如递归算法实现斐波那契数列
#include<stdio.h>
int Fib(int n){
if(n==0)
return 0;
else if(n==1)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
int main(){
int a;
printf("请输入要求第几个斐波那契数:");
scanf("%d",&a);
int b=Fib(a-1);
printf("%d",b);
}
四.队列的应用
树的层次遍历
新建一个队列,从根结点出发,按层次遍历各个结点,具体操作如下:
1.扫描根结点(1号结点),并将其左右孩子放到队列的队尾,接着1号结点出队。
队列情况:②--->③
2.检查队头结点,将其左右孩子放到队列的队尾。
队列情况:② ---> ③ ---> ④ ---> ⑤
处理完2号结点,2号结点出队。
队列情况:③ ---> ④ ---> ⑤
3.以此类推,直到队列为空,完成树的层次遍历。
图的广度优先遍历
从1号结点出发:
1.遍历1号结点时,检查与1号结点相邻的结点有没有被遍历过,2号和3号结点都没有被遍历过,所以把它们放到队尾。
队列情况:① ---> ② ---> ③
处理完 ① 号结点后,①号结点出队。
队列情况:② ---> ③
2. 与 ② 号结点相邻的只有4号结点没被处理过,所以4号结点入队,2号结点出队。
队列情况:③ ---> ④
3.以此类推,直到队列为空,就完成了图的广度优先遍历。