Pandas使用merge对dataframe进行合并时出现全为Nan的问题

在使用Pandas的merge操作合并DataFrame A和B时,如果结果中B的所有列都显示为Nan,这通常是由于键值不匹配导致的。可能的原因包括键值数据类型不一致和键值字符串的细节问题。解决方法包括确保键值数据类型相同(如将它们都转换为字符串)和处理键值字符串的空白。例如,通过strip()方法去除字符串前后的空格可以解决因多余空格引起的匹配失败问题。
摘要由CSDN通过智能技术生成

使用merge进行对dataframe A和B合并时(将B合并到A),结果B的列全部为Nan,即出现了A、B键值没有匹配上的问题。而A、B看似键值是可以匹配的,这里使用的键值是字符串。查看资料和分析,这里有两种常见的情况:(代码中的Key值按需调整)

  • 键值数据类型不一致可能导致无法匹配。将键值数据类型准换成一致的(这里展示将object类型转换成string):

df1.Key = df1.Street.astype(pd.StringDtype()) # 将object类型转换成string
df2.Key = df2.Street.astype(pd.StringDtype()) # 将object类型转换成string

若同一转换为int:

df1.Key = df1.Street.astype(int) # 将object类型转换成string
  • 键值字符串的细节有问题。我遇到的问题属于这个问题,A的键值字符串的前后各有1个空格(好坑啊),将空格去除后即可成功匹配

for i in range(len(df1['Key'])):
    df1['Street'][i] = df1['Street'][i].strip() # 去除前后的空格

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: pandas是一个强大的Python数据分析库,其提供了各种操作数据的功能,包括合并多个DataFramemerge()函数是pandas中一个非常常用的合并数据的方法。 首先,假设有两个DataFrame,df1和df2,它们包含不同的数据列和索引。我们可以使用merge()方法将它们合并成一个新的DataFramemerge()函数的基本语法如下: merged_df = pd.merge(df1, df2, on='列名') 其中,df1和df2是待合并的两个DataFrame对象,on='列名'表示根据该列进行合并。如果两个DataFrame的该列数据相等,则合并这两行数据。可以设置参数how来指定合并方式,包括inner、outer、left、right,默认为inner(内连接)。 例如,如果df1中有列A和列B,df2中有列A和列C,我们可以使用如下代码合并它们: merged_df = pd.merge(df1, df2, on='A') 合并后的新DataFrame merged_df 将包含df1和df2的所有列,并且根据列A的数据进行合并。 除了根据列进行合并外,还可以根据索引进行合并。只需将on参数设置为None,然后使用left_index和right_index指定要合并的索引列。 例如,如果我们要根据索引合并df1和df2,可以使用如下代码: merged_df = pd.merge(df1, df2, left_index=True, right_index=True) 这样,合并后的新DataFrame merged_df 将根据索引进行合并,包含df1和df2的所有列。 综上所述,pandas中的merge()函数为我们提供了一种简便的方法来合并多个DataFrame。我们可以根据指定的列或索引进行合并,并通过设置不同的合并方式来控制结果。这使得我们能够轻松地处理和分析大量的数据。 ### 回答2: pandas是一个用于数据分析和数据操作的Python库。其中的merge函数可以用于合并多个DataFrame。下面是如何使用merge函数合并多个DataFrame的步骤: 1. 导入pandas库:首先,需要导入pands库,以便使用其中的merge函数。通常,pandas库已经被安装在Python环境中。 ```python import pandas as pd ``` 2. 创建要合并DataFrame:准备需要合并的多个DataFrame。每个DataFrame可以包含一些共享的列或不同的列。 ```python df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]}) df2 = pd.DataFrame({'A': [1, 2, 3], 'C': [7, 8, 9]}) df3 = pd.DataFrame({'A': [1, 2, 3], 'D': [10, 11, 12]}) ``` 3. 使用merge函数合并DataFrame使用merge函数将多个DataFrame合并为一个DataFrame。在此过程中,可以指定一些参数,如连接键和合并方式。 ```python merged_df = pd.merge(df1, df2, on='A', how='inner') merged_df = pd.merge(merged_df, df3, on='A', how='inner') ``` 上述代码将df1、df2和df3按'A'这一列进行内连接合并合并后的DataFrame将包含'A'列以及df1、df2和df3中的其他列。 4. 查看合并后的结果:可以使用head()或tail()函数查看合并后的结果的前几行或后几行。 ```python print(merged_df.head()) ``` 通过执行上述代码,将显示合并后的DataFrame的前几行。 以上是使用pandasmerge函数合并多个DataFrame的基本步骤。可以根据具体的需求,调整参数来实现不同的合并方式,如左连接、右连接、外连接等。 ### 回答3: pandas 中的 merge() 函数可以用于合并多个 DataFrame合并是根据指定的一列或多列进行的,并且类似于 SQL 中的 JOIN 操作。下面是一个简单的例子来说明如何使用 merge()。 假设我们有两个 DataFrame,df1 和 df2。df1 包含员工的姓名和员工编号,而 df2 包含员工编号和员工的职位信息。我们想要根据员工编号将这两个 DataFrame 合并起来,创建一个新的 DataFrame,其中包含员工的姓名、员工编号和职位信息。 首先,我们使用 merge() 函数将 df1 和 df2 按照员工编号进行合并merged_df = pd.merge(df1, df2, on='员工编号') 在这里,我们将 df1 和 df2 通过员工编号这一列进行合并,并将结果保存在 merged_df 中。 如果 df1 和 df2 中的列名不同,我们可以使用 left_on 和 right_on 参数来指定要进行合并的列名: merged_df = pd.merge(df1, df2, left_on='df1员工编号', right_on='df2员工编号') 此外,还可以使用 merge() 函数的 how 参数来指定合并的方式,如 'left'、'right'、'inner' 或 'outer'。默认情况下,merge() 函数使用 'inner' 合并方式,即只保留两个 DataFrame 中共有的数据。不过,我们也可以使用其他合并方式来合并数据。 通过使用 merge() 函数,我们可以方便地将多个 DataFrame 进行合并,根据不同的需求生成一个新的 DataFrame。希望这个回答能对你有所帮助。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值