2016-2017 ACM-ICPC CHINA-Final
题意:给定 n n n 个点, m m m 条边的无向连通图,每条边有一个边权,每个点有个颜色 c i c_i ci。每次询问从 u u u 点出发,只经过小于等于 w w w 的边能到达的所有点中最多的颜色编号是多少(多个颜色编号相同时输出编号最小的)。强制在线,多组输入。
两个点能可达之间只跟他们路径之间一条最大路径最小的路径相关。建立一颗kruskal重构树,树上倍增找到每个点能被合并的最高点。以这个点为根的子树就是所有可达的点。对于一个子树中占比最多的颜色时什么颜色是个经典问题(CF600E),线段树合并/树上启发式合并都可以通过。个人写了更习惯的树上启发式合并。
#include <bits/stdc++.h>
#define int long long
#define endl '\n'
#define lowbit(x) (x&(-x))
#define ull unsigned long long
#define pii pair<int,int>
using namespace std;
const string yes="Yes\n",no="No\n";
const int N = 1000005,inf = 2e18,mod=1000000007;
int n,m,q,last;
int c[200005],ans[200005],anscnt[200005],d[200005];
vector<int>p[400005];
struct DSU{
vector<int>f;
int n;
void init(int x){n=x;f.resize(n+1);iota(f.begin(),f.end(),0);}
int getf(int u){return f[u]==u?u:f[u]=getf(f[u]);}
void merge(int u,int v){f[u]=v;}
}dsu;
struct edge{
int u,v,w;
bool operator<(const edge &t)const{
return w<t.w;
}
}e[200005];
map<int,int>mp[200005];
int fa[200005][18];
void dfs(int u){
for(int i=1;i<18;i++){fa[u][i]=fa[fa[u][i-1]][i-1];}
if(u<=n){mp[u][c[u]]=1;return;}
for(auto v:p[u]){
fa[v][0]=u;
dfs(v);
if(mp[u].size()<mp[v].size()){
swap(mp[u],mp[v]);
ans[u]=ans[v];anscnt[u]=anscnt[v];
}
for(auto it:mp[v]){
int l=it.first,r=it.second;
mp[u][l]+=r;
int x=mp[u][l];
if(x>anscnt[u]||x==anscnt[u]&&l<ans[u]){
ans[u]=l;anscnt[u]=x;
}
}
}
}
int getans(int u,int x){
for(int i=17;~i;i--){
int v=fa[u][i];
if(d[v]<=x)u=v;
}
return ans[u];
}
void solve(){
cin>>n>>m;
dsu.init(2*n);d[0]=inf;
for(int i=1;i<=n;i++){cin>>c[i];ans[i]=c[i];anscnt[i]=1;}
for(int i=1;i<=2*n;i++){p[i].clear();mp[i].clear();}
for(int i=1;i<=m;i++){cin>>e[i].u>>e[i].v>>e[i].w;}
sort(e+1,e+1+m);
int now=n,root=2*n-1;
for(int i=1;i<=m;i++){
auto [u,v,w]=e[i];
int fu=dsu.getf(u),fv=dsu.getf(v);
if(fu==fv)continue;
++now;d[now]=w;
dsu.merge(fu,now);dsu.merge(fv,now);
p[now].push_back(fu);p[now].push_back(fv);
}
dfs(2*n-1);last=0;
for(cin>>q;q--;){
int x,y;cin>>x>>y;
x^=last;y^=last;
last=getans(x,y);
cout<<last<<endl;
}
}
signed main(){
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cout<<fixed<<setprecision(12);main_init();
int t=1;
cin>>t;
for(int i=1;i<=t;i++){
cout<<"Case #"<<i<<":"<<endl;
solve();
}
}