【写题记录】CFgym101194G kruskal重构树+树上倍增+树上启发式合并

2016-2017 ACM-ICPC CHINA-Final

题意:给定 n n n 个点, m m m 条边的无向连通图,每条边有一个边权,每个点有个颜色 c i c_i ci。每次询问从 u u u 点出发,只经过小于等于 w w w 的边能到达的所有点中最多的颜色编号是多少(多个颜色编号相同时输出编号最小的)。强制在线,多组输入。

两个点能可达之间只跟他们路径之间一条最大路径最小的路径相关。建立一颗kruskal重构树,树上倍增找到每个点能被合并的最高点。以这个点为根的子树就是所有可达的点。对于一个子树中占比最多的颜色时什么颜色是个经典问题(CF600E),线段树合并/树上启发式合并都可以通过。个人写了更习惯的树上启发式合并。

#include <bits/stdc++.h>
#define int long long
#define endl '\n'
#define lowbit(x) (x&(-x))
#define ull unsigned long long 
#define pii pair<int,int>
using namespace std;
const string yes="Yes\n",no="No\n";
const int N = 1000005,inf = 2e18,mod=1000000007;
int n,m,q,last;
int c[200005],ans[200005],anscnt[200005],d[200005];
vector<int>p[400005];
struct DSU{
    vector<int>f;
    int n;
    void init(int x){n=x;f.resize(n+1);iota(f.begin(),f.end(),0);}
    int getf(int u){return f[u]==u?u:f[u]=getf(f[u]);}
    void merge(int u,int v){f[u]=v;}
}dsu;
struct edge{
    int u,v,w;
    bool operator<(const edge &t)const{
        return w<t.w;
    }
}e[200005];
map<int,int>mp[200005];
int fa[200005][18];
void dfs(int u){
    for(int i=1;i<18;i++){fa[u][i]=fa[fa[u][i-1]][i-1];}
    if(u<=n){mp[u][c[u]]=1;return;}
    for(auto v:p[u]){
        fa[v][0]=u;
        dfs(v);
        if(mp[u].size()<mp[v].size()){
            swap(mp[u],mp[v]);
            ans[u]=ans[v];anscnt[u]=anscnt[v];
        }
        for(auto it:mp[v]){
            int l=it.first,r=it.second;
            mp[u][l]+=r;
            int x=mp[u][l];
            if(x>anscnt[u]||x==anscnt[u]&&l<ans[u]){
                ans[u]=l;anscnt[u]=x;
            }
        }
    }
}
int getans(int u,int x){
    for(int i=17;~i;i--){
        int v=fa[u][i];
        if(d[v]<=x)u=v;
    }
    return ans[u];
}
void solve(){
    cin>>n>>m;
    dsu.init(2*n);d[0]=inf;
    for(int i=1;i<=n;i++){cin>>c[i];ans[i]=c[i];anscnt[i]=1;}
    for(int i=1;i<=2*n;i++){p[i].clear();mp[i].clear();}
    for(int i=1;i<=m;i++){cin>>e[i].u>>e[i].v>>e[i].w;}
    sort(e+1,e+1+m);
    int now=n,root=2*n-1;
    for(int i=1;i<=m;i++){
        auto [u,v,w]=e[i];
        int fu=dsu.getf(u),fv=dsu.getf(v);
        if(fu==fv)continue;
        ++now;d[now]=w;
        dsu.merge(fu,now);dsu.merge(fv,now);
        p[now].push_back(fu);p[now].push_back(fv);
    }
    dfs(2*n-1);last=0;
    for(cin>>q;q--;){
        int x,y;cin>>x>>y;
        x^=last;y^=last;
        last=getans(x,y);
        cout<<last<<endl;
    }
}
signed main(){
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cout<<fixed<<setprecision(12);main_init();
    int t=1;
    cin>>t;
    for(int i=1;i<=t;i++){
        cout<<"Case #"<<i<<":"<<endl;
        solve();
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值