大意:
有m个石头,标号从0\sim m-1,有n只青蛙,所有青蛙一开始都在编号为0的石头上有m个石头,标号从0∼m−1,有n只青蛙,所有青蛙一开始都在编号为0的石头上
每只青蛙每次可以跳的距离为a[i],求所有青蛙能够占领的石头的编号之和每只青蛙每次可以跳的距离为a[i],求所有青蛙能够占领的石头的编号之和
思路:思路:
每个青蛙可以跳的位置应该是gcd(a[i],m)的倍数每个青蛙可以跳的位置应该是gcd(a[i],m)的倍数
如果gcd(a[i],m)|x,石子x会被第i个青蛙踩到如果gcd(a[i],m)∣x,石子x会被第i个青蛙踩到
gcd(a[i],m)|x表示后者是前者的倍数gcd(a[i],m)∣x表示后者是前者的倍数
sum(q)=\frac{\phi (q)*q}{2}sum(q)=
2
ϕ(q)∗q
sim(q)是1\sim q-1与q互质的数的和,\phi (q)是1\sim q-1与q互质的数的个数sim(q)是1∼q−1与q互质的数的和,ϕ(q)是1∼q−1与q互质的数的个数
可以特判gcd(a[i],m)==1,这时答案就是\frac{m*(m-1)}{2}可以特判gcd(a[i],m)==1,这时答案就是
2
m∗(m−1)
欧拉函数求和+思维
当m=20,a[]=2,5当m=20,a[]=2,5
如果枚举a[i]的贡献求和,会出现重复计算如果枚举a[i]的贡献求和,会出现重复计算
可以考虑枚举m的每个因子的贡献(这个原理我没搞清楚,网上也没看到有人解释)可以考虑枚举m的每个因子的贡献(这个原理我没搞清楚,网上也没看到有人解释)
m的因子有2、4、5、10m的因子有2、4、5、10
石子x=2青蛙可以踩到,贡献是2*(1+3+7+9)石子x=2青蛙可以踩到,贡献是2∗(1+3+7+9)
即2*\frac{\phi (\frac{20}{2})*\frac{20}{2}}{2}即2∗
2
ϕ(
2
20
)∗
2
20
1\sim 9与10互质的数是1、3、7、9,这样得到的数与2的乘积不会大于等于m,同时也不会和其它因子得到的值重复1∼9与10互质的数是1、3、7、9,这样得到的数与2的乘积不会大于等于m,同时也不会和其它因子得到的值重复
石子x=4青蛙可以踩到,贡献是4*(1+2+3+4)石子x=4青蛙可以踩到,贡献是4∗(1+2+3+4)
即4*\frac{\phi (\frac{20}{4})*\frac{20}{4}}{2}即4∗
2
ϕ(
4
20
)∗
4
20
x=5、10同上x=5、10同上
即,如果x能被踩到,贡献就是\frac{\phi (\frac{m}{x})*m}{2}即,如果x能被踩到,贡献就是
2
ϕ(
x
m
)∗m
可以发现这样统计很巧妙,不会有重可以发现这样统计很巧妙,不会有重
复杂度O(\sqrt{m}*\sqrt[4]{m})复杂度O(
m
∗
4
m
)
#include<bitsdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e4+10;
ll com[maxn];
ll t,n,m,ans;
ll euler(ll x) {
ll ans = x;
for (ll i = 2; i * i <= x; ++i) {
if (x % i == 0) {
ans = ans / i * (i - 1);
while (x % i == 0) x /= i;
}
}
if (x != 1) ans = ans / x * (x - 1);
return ans;
}
bool check(ll x) {
for(int i = 0; i < n; i++)
if(x%com[i] == 0)
return true;
return false;
}
int main() {
cin>>t;
for(ll cas=1;cas<=t;++cas,ans=0) {
bool Prime = false;
cin>>n>>m;
for(ll i=0,x,g;i<n;++i) {
cin>>x;
com[i]=__gcd(x,m);
if(com[i] == 1) Prime = true;
}
if(Prime) ans = m*(m-1)/2;
else {
for(int i = 2; i*i <= m; i++) if(m%i == 0){
if(check(i)) ans += euler(m/i)*m/2;
if(i*i!=m && check(m/i)) ans+= euler(i)*m/2;
}
}
printf("Case #%lld: %lld\n",cas,ans);
}
}