21天好习惯第一期-16

大意:
有m个石头,标号从0\sim m-1,有n只青蛙,所有青蛙一开始都在编号为0的石头上有m个石头,标号从0∼m−1,有n只青蛙,所有青蛙一开始都在编号为0的石头上
每只青蛙每次可以跳的距离为a[i],求所有青蛙能够占领的石头的编号之和每只青蛙每次可以跳的距离为a[i],求所有青蛙能够占领的石头的编号之和

思路:思路:
每个青蛙可以跳的位置应该是gcd(a[i],m)的倍数每个青蛙可以跳的位置应该是gcd(a[i],m)的倍数
如果gcd(a[i],m)|x,石子x会被第i个青蛙踩到如果gcd(a[i],m)∣x,石子x会被第i个青蛙踩到
gcd(a[i],m)|x表示后者是前者的倍数gcd(a[i],m)∣x表示后者是前者的倍数
sum(q)=\frac{\phi (q)*q}{2}sum(q)= 
2
ϕ(q)∗q

 
sim(q)是1\sim q-1与q互质的数的和,\phi (q)是1\sim q-1与q互质的数的个数sim(q)是1∼q−1与q互质的数的和,ϕ(q)是1∼q−1与q互质的数的个数
可以特判gcd(a[i],m)==1,这时答案就是\frac{m*(m-1)}{2}可以特判gcd(a[i],m)==1,这时答案就是 
2
m∗(m−1)

 

欧拉函数求和+思维
当m=20,a[]=2,5当m=20,a[]=2,5
如果枚举a[i]的贡献求和,会出现重复计算如果枚举a[i]的贡献求和,会出现重复计算
可以考虑枚举m的每个因子的贡献(这个原理我没搞清楚,网上也没看到有人解释)可以考虑枚举m的每个因子的贡献(这个原理我没搞清楚,网上也没看到有人解释)
m的因子有2、4、5、10m的因子有2、4、5、10
石子x=2青蛙可以踩到,贡献是2*(1+3+7+9)石子x=2青蛙可以踩到,贡献是2∗(1+3+7+9)
即2*\frac{\phi (\frac{20}{2})*\frac{20}{2}}{2}即2∗ 
2
ϕ( 
2
20

 )∗ 
2
20

 

 
1\sim 9与10互质的数是1、3、7、9,这样得到的数与2的乘积不会大于等于m,同时也不会和其它因子得到的值重复1∼9与10互质的数是1、3、7、9,这样得到的数与2的乘积不会大于等于m,同时也不会和其它因子得到的值重复
石子x=4青蛙可以踩到,贡献是4*(1+2+3+4)石子x=4青蛙可以踩到,贡献是4∗(1+2+3+4)
即4*\frac{\phi (\frac{20}{4})*\frac{20}{4}}{2}即4∗ 
2
ϕ( 
4
20

 )∗ 
4
20

 

 
x=5、10同上x=5、10同上
即,如果x能被踩到,贡献就是\frac{\phi (\frac{m}{x})*m}{2}即,如果x能被踩到,贡献就是 
2
ϕ( 
x
m

 )∗m

 
可以发现这样统计很巧妙,不会有重可以发现这样统计很巧妙,不会有重
复杂度O(\sqrt{m}*\sqrt[4]{m})复杂度O( 
m

 ∗ 
4
  
m

 )
 

#include<bitsdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e4+10;
ll com[maxn];
ll t,n,m,ans;
ll euler(ll x) {
    ll ans = x;
    for (ll i = 2; i * i <= x; ++i) {
        if (x % i == 0) {
            ans = ans / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    }
    if (x != 1) ans = ans / x * (x - 1);
    return ans;
}
bool check(ll x) {
    for(int i = 0; i < n; i++)
        if(x%com[i] == 0)
            return true;
    return false;
}
int main() {
    cin>>t;
    for(ll cas=1;cas<=t;++cas,ans=0) {
        bool Prime = false;
        cin>>n>>m;
        for(ll i=0,x,g;i<n;++i) {
            cin>>x;
            com[i]=__gcd(x,m);
            if(com[i] == 1) Prime = true;
        }
        if(Prime) ans = m*(m-1)/2;
        else {
            for(int i = 2; i*i <= m; i++) if(m%i == 0){
                if(check(i)) ans += euler(m/i)*m/2;
                if(i*i!=m && check(m/i)) ans+= euler(i)*m/2;
            }
        }
        printf("Case #%lld: %lld\n",cas,ans);
    }
}

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值