信息安全数学基础 Chapter 3——有限域(一)

Chapter 3 有限域

定义3.1 F \mathbb F F为一个非空集合,在其上定义两种运算:加法和乘法,这两种运算在集合上封闭,且满足下列条件:

  1. F \mathbb F F中所有元素对于加法形成加法交换群
  2. F \mathbb F F中所有非零元素(记为 F ∗ \mathbb F^* F)对于乘法构成乘法交换群
  3. 任意 F \mathbb F F中元素满足乘法对加法的交换律(与实数集中的交换律形式上相同)

则称 F \mathbb F F对于规定的乘法和加法构成一个域。
一个域至少有两个元素:加法群零元(称为域的零元, 0 0 0)和乘法单位元(称为域的单位元, e e e。域元素个数有限称为有限域或伽罗华域,否则称为无限域。有理数集合 Q \mathbb Q Q和复数集合 C \mathbb C C按定义的加法和乘法均为域


定义3.2 F \mathbb F F是一个域, F 0 \mathbb F_0 F0 F \mathbb F F的非空子集,如果对于 F \mathbb F F上的加法和乘法, F 0 \mathbb F_0 F0本身也是一个域,则称 F 0 \mathbb F_0 F0 F \mathbb F F的子域, F \mathbb F F F 0 \mathbb F_0 F0的扩域,记作 F 0 ⊊ F \mathbb F_0\subsetneq\mathbb F F0F


定理3.1 F 0 \mathbb F_0 F0 F 0 ∗ \mathbb F_0^* F0均是域 F \mathbb F F的非空子集,当且仅当下面两个条件成立时 F 0 \mathbb F_0 F0 F \mathbb F F的子域:

  1. 对于任意 a , b ∈ F 0 a, b\in \mathbb F_0 a,bF0,都有 − a , a + b ∈ F 0 -a, a+b\in\mathbb F_0 a,a+bF0
  2. 对于任意非零元素 a , b ∈ F 0 a, b\in\mathbb F_0 a,bF0,都有 a − 1 , a b ∈ F 0 a^{-1}, ab\in\mathbb F_0 a1,abF0

证明方法:需要证明 F 0 \mathbb F_0 F0 F \mathbb F F的加法子群, F 0 ∗ \mathbb F_0^* F0 F \mathbb F F的乘法子群。这个证明与证明子群很相似。
∵ a , − a ∈ F 0 , ∴ 0 ∈ F 0 \because a,-a\in\mathbb F_0, \therefore0\in\mathbb F_0 a,aF0,0F0,有加法单位元,每个元素有逆元。
∵ ∀ a , b ∈ F 0 , a + b ∈ F 0 \because \forall a, b\in \mathbb F_0, a+b\in \mathbb F_0 a,bF0,a+bF0,故运算封闭。
该运算由于在 F \mathbb F F中构成域,因此满足交换律与结合律。因此 F 0 \mathbb F_0 F0 F \mathbb F F的加法子群。
∵ ∀ a ∈ F 0 , a − 1 ∈ F 0 \because \forall a\in\mathbb F_0, a^{-1}\in\mathbb F_0 aF0,a1F0,故每个元素有逆元,有乘法单位元 e e e
∵ ∀ a , b ∈ F 0 , a b ∈ F 0 \because \forall a, b\in \mathbb F_0, ab\in \mathbb F_0 a,bF0,abF0,故运算封闭。
该运算由于在 F \mathbb F F中构成域,因此满足交换律与结合律。因此 F 0 ∗ \mathbb F_0^* F0 F \mathbb F F的乘法子群。
由于这两个运算在 F \mathbb F F中满足分配律,因此在 F 0 \mathbb F_0 F0中同样满足。 □ \Box

定义 a − n = ( a n ) − 1 a^{-n}=(a^n)^{-1} an=(an)1,当 a ≠ 0 a\ne 0 a=0时,定义 a 0 = e a^0=e a0=e


定理3.2 F \mathbb F F是一个域,那么:

  1. 对于任意 a ∈ F a\in\mathbb F aF 0 a = a 0 = 0 0a=a0=0 0a=a0=0
  2. 对于任意 a , b ∈ F a,b\in\mathbb F a,bF,若 a b = 0 ab=0 ab=0,则 a = 0 a=0 a=0 b = 0 b=0 b=0

证明方法: 0 a = ( 0 + 0 ) a 0a=(0+0)a 0a=(0+0)a 证明1
a ≠ 0 a\ne 0 a=0,则 a b = a − 1 a b = b = 0 ab=a^{-1}ab=b=0 ab=a1ab=b=0,若 b = 0 b=0 b=0同理。

在域中,二项式定理成立。


定理3.3 F \mathbb F F是一个域, a , b ∈ F a,b\in\mathbb F a,bF,对于任意正整数 n n n,有
( a + b ) n = ∑ i = 0 n C n i a n − i b i = ∑ i = 0 n ( n i ) a n − i b i (a+b)^n=\sum_{i=0}^n C_n^i a^{n-i} b^i =\sum_{i=0}^n\begin{pmatrix}n\\i\end{pmatrix}a^{n-i} b^i (a+b)n=i=0nCnianibi=i=0n(ni)anibi

证明方法:分配律易证。


定义3.3 F \mathbb F F是一个域,如果存在正整数 m m m,使得对于任意 a ∈ F a\in\mathbb F aF均有 m a = 0 ma=0 ma=0,则在所有满足上述条件的m中,最小的正整数称为域 F \mathbb F F的特征。如果 m m m不存在则称 F \mathbb F F的特征为0。特征记作 c h a r ( F ) char(\mathbb F) char(F)


定义3.4 F , k \mathbb F, \mathbb k F,k是两个域,如果存在 F \mathbb F F k \mathbb k k的一一映射 δ \delta δ,使得对于任意 a , b ∈ F a,b\in\mathbb F a,bF,均有
δ ( a + F b ) = δ ( a ) + k δ ( b ) , δ ( a × F b ) = δ ( a ) × k δ ( b ) \delta(a+_{\mathbb F}b)=\delta(a)+_{\mathbb k}\delta(b), \delta(a\times_{\mathbb F} b)=\delta(a)\times_{\mathbb k}\delta(b) δ(a+Fb)=δ(a)+kδ(b),δ(a×Fb)=δ(a)×kδ(b)
则称 δ \delta δ F \mathbb F F k \mathbb k k的同构映射,称 F , k \mathbb F, \mathbb k F,k同构,记作 F ≅ k \mathbb F\cong\mathbb k Fk。如果 F = k \mathbb F=\mathbb k F=k则称 δ \delta δ为自同构映射,若对于任意 a ∈ F a\in\mathbb F aF均有 δ ( a ) = a \delta(a)=a δ(a)=a,则称 δ \delta δ为恒等自同构映射。一个域的最小子域称为该域的素域。


定理3.4 F \mathbb F F是一个域,则 c h a r ( F ) char(\mathbb F) char(F)为0或某个素数 p p p。特征为素数 p p p的域的素域与 Z p \mathbb Z_p Zp同构,特征为0的域的素域与 Q \mathbb Q Q同构。

证明方法:此证明显然需要分为三个部分进行。
首先证明特征为0或素数。如果特征不是素数,则可写为 s × t s\times t s×t的形式,也即 ∀ a ∈ F , ( s t ) a = s t a = 0 \forall a\in \mathbb F, (st)a=sta=0 aF,(st)a=sta=0,故 s a = 0 sa=0 sa=0 t a = 0 ta=0 ta=0。此时特征就应该是 s s s t t t而非 s t st st
F \mathbb F F是一个域且特征不为0时,其所有子域显然均需要包含 0 0 0 e e e,由于需要满足运算的封闭性,所以还需要包含 2 e , 3 e , . . . , ( p − 1 ) e 2e, 3e, ...,(p-1)e 2e,3e,...,(p1)e。由这些元素构成的集合容易证明其是一个域(需要注意乘法逆元的证明,由于 p p p是素数,故对于任意的 0 < k < p 0<k<p 0<k<p,均能找到其关于模 p p p的逆元,也就是对应的乘法逆元),因此这就是 F \mathbb F F上最小的域。同构映射 δ ( k e ) = k \delta(ke)=k δ(ke)=k Z p \mathbb Z_p Zp构成同构。
F \mathbb F F的特征为0时,同样其所有子域均需要包含 0 , e , 2 e , 3 e , . . . 0,e,2e,3e,... 0,e,2e,3e,...。由加法运算的封闭性,还需要包含 − e , − 2 e , − 3 e , . . . -e,-2e,-3e,... e,2e,3e,...。又由于需要满足乘法逆元也包含于域中,所以 e − 1 , 2 e − 1 , . . . − e − 1 , − 2 e − 1 , . . . e^{-1}, 2e^{-1},...-e^{-1},-2e^{-1},... e1,2e1,...e1,2e1,...也在子域中。又需要满足乘法的封闭性,故任意子域均需包含 F 0 = { ( a e ) ( b e ) − 1 ∣ a , b ∈ Z , b ≠ 0 } \mathbb F_0=\{(ae)(be)^{-1}|a,b\in\mathbb Z,b\ne 0\} F0={(ae)(be)1a,bZ,b=0}。这个集合容易证明域的所有判定性质,因此其本身就是一个域,而且是最小的子域。同构映射 δ ( ( a e ) ( b e ) − 1 ) = a b \delta((ae)(be)^{-1})=\frac{a}{b} δ((ae)(be)1)=ba Q \mathbb Q Q构成同构。


定理3.5 F \mathbb F F是一个域, c h a r ( F ) = p char(\mathbb F)=p char(F)=p,则对于任意 a , b ∈ F , n ≥ 0 a,b\in\mathbb F,n\ge 0 a,bF,n0,均有
( a ± b ) p n = a p n ± b p n (a\pm b)^{p^n}=a^{p^n}\pm b^{p^n} (a±b)pn=apn±bpn

证明方法:首先使用二项式定理证明 ( a + b ) p = a p + b p (a+b)^p=a^p+b^p (a+b)p=ap+bp
( a + b ) p (a+b)^p (a+b)p中的第i项为 p ! i ! ( p − i ) ! a i b p − i \frac{p!}{i!(p-i)!}a^ib^{p-i} i!(pi)!p!aibpi,即证明 p ! i ! ( p − i ) ! \frac{p!}{i!(p-i)!} i!(pi)!p! p p p的倍数 ( i ≠ 0 , i ≠ p ) (i\ne 0,i\ne p) (i=0,i=p)。显然这是一个整数,且 p ! i ! ( p − i ) ! = p × ( p − 1 ) ! i ! ( p − i ) ! \frac{p!}{i!(p-i)!}=p\times \frac{(p-1)!}{i!(p-i)!} i!(pi)!p!=p×i!(pi)!(p1)!。后面的数不可能是分数,因为如果是,那么分母必然是 p p p的倍数,但是分母显然与 p p p互素。因此后面的数是整数,也就是说这个数能够被 p p p整除。故得证第一项。
然后使用数学归纳法,用类似的方式证明后面的式子即可。


定义3.5 对于非负整数 i i i a i x i , a i ∈ F a_ix^i,a_i\in\mathbb F aixi,aiF表示域 F \mathbb F F上文字为x的单项式,称形式和 f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x 1 + a 0 x 0 , a i ∈ F f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0x^0,a_i\in\mathbb F f(x)=anxn+an1xn1+...+a1x1+a0x0,aiF为域上文字为x的多项式,简称域 F \mathbb F F上的多项式。 a i x i a_ix^i aixi称为 f ( x ) f(x) f(x) i i i次项, a i a_i ai称为 f ( x ) f(x) f(x) i i i次项系数。当 a n ≠ 0 a_n\ne 0 an=0时,称该多项式为n次多项式, a n a_n an称为 f ( x ) f(x) f(x)的首项系数,多项式 f ( x ) f(x) f(x)的次数称为 deg ⁡ f ( x ) \deg f(x) degf(x)。如果多项式各项系数均为0,称为零多项式,记为0,次数规定为 − ∞ -\infty
F \mathbb F F上文字为x的所有多项式的集合用符号 F [ x ] \mathbb F[x] F[x]表示,规定 x 0 = 1 ∈ F , a 0 x 0 = a 0 ∈ F x^0=1\in\mathbb F,a_0x^0=a_0\in\mathbb F x0=1F,a0x0=a0F,则有 F ⊊ F [ x ] \mathbb F\subsetneq\mathbb F[x] FF[x]。注意按照上面的定义, F [ x ] \mathbb F[x] F[x]不是域。
关于多项式次数,下面结论成立:
deg ⁡ ( f ( x ) + g ( x ) ) ≤ m a x { deg ⁡ f ( x ) , deg ⁡ g ( x ) } deg ⁡ ( f ( x ) g ( x ) ) = deg ⁡ f ( x ) + deg ⁡ g ( x ) \deg (f(x)+g(x))\le max\{\deg f(x), \deg g(x)\} \\\deg(f(x)g(x))=\deg f(x)+\deg g(x) deg(f(x)+g(x))max{degf(x),degg(x)}deg(f(x)g(x))=degf(x)+degg(x)

注意:这里的x可以表示任意的东西而不仅限于 F \mathbb F F,即anything,但是需要定义次方。


定理3.6 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)为域 F \mathbb F F上的两个多项式, g ( x ) ≠ 0 g(x)\ne 0 g(x)=0,则存在唯一一对多项式 q ( x ) , r ( x ) q(x),r(x) q(x),r(x)使得
f ( x ) = q ( x ) g ( x ) + r ( x ) , deg ⁡ r ( x ) < deg ⁡ g ( x ) f(x)=q(x)g(x)+r(x),\deg r(x)<\deg g(x) f(x)=q(x)g(x)+r(x),degr(x)<degg(x)
注意:不要看系数能否被整除,而应该注意到域的性质。由于域的特征只可能为素数或0,因此不要想当然地用诸如 5 x 2 + 1 5x^2+1 5x2+1 2 x 2 + 4 2x^2+4 2x2+4来挑战这条定理,因为整数集并不是域!

证明方法:归纳。
存在性易证,总存在一个系数能够消去被除式的最高次项(利用乘法逆元)
唯一性: ( q ( x ) − q ′ ( x ) ) g ( x ) = r ′ ( x ) − r ( x ) , deg ⁡ ( r ′ ( x ) − r ( x ) ) < deg ⁡ g ( x ) (q(x)-q'(x))g(x)=r'(x)-r(x),\deg (r'(x)-r(x))<\deg g(x) (q(x)q(x))g(x)=r(x)r(x),deg(r(x)r(x))<degg(x),故 q ( x ) = q ′ ( x ) , r ( x ) = r ′ ( x ) q(x)=q'(x), r(x)=r'(x) q(x)=q(x),r(x)=r(x)

定理中的式子称为多项式带余除法算式, r ( x ) r(x) r(x)称为余式,记作 ( f ( x ) ) g ( x ) = r ( x ) (f(x))_{g(x)}=r(x) (f(x))g(x)=r(x)


定理3.7 多项式满足模加和模乘运算。证明略。


定义3.6
整除: r ( x ) = 0 r(x)=0 r(x)=0
倍式与因式
真因式:次数小于倍式的因式


定义3.7
可约多项式:不含次数大于0的真因式的多项式
不可约多项式


定理3.8 F \mathbb F F上多项式 f ( x ) f(x) f(x)可约,则当且仅当存在两个域 F \mathbb F F上多项式 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x) deg ⁡ f 1 ( x ) < deg ⁡ f ( x ) , deg ⁡ f 2 ( x ) < deg ⁡ f ( x ) \deg f_1(x)<\deg f(x), \deg f_2(x)<\deg f(x) degf1(x)<degf(x),degf2(x)<degf(x),使得 f ( x ) = f 1 ( x ) f 2 ( x ) f(x)=f_1(x)f_2(x) f(x)=f1(x)f2(x)

证明略。


定理3.9 如果有 g ( x ) ∣ f 1 ( x ) , g ( x ) ∣ f 2 ( x ) g(x)|f_1(x), g(x)|f_2(x) g(x)f1(x),g(x)f2(x),则任意多项式 s ( x ) , t ( x ) s(x),t(x) s(x),t(x),有 g ( x ) ∣ s ( x ) f 1 ( x ) + t ( x ) f 2 ( x ) g(x)|s(x)f_1(x)+t(x)f_2(x) g(x)s(x)f1(x)+t(x)f2(x)

证明方法:
f 1 ( x ) = g ( x ) q 1 ( x ) , f 2 ( x ) = g ( x ) q 2 ( x ) f_1(x)=g(x)q_1(x),f_2(x)=g(x)q_2(x) f1(x)=g(x)q1(x),f2(x)=g(x)q2(x)
s ( x ) f 1 ( x ) + t ( x ) f 2 ( x ) = ( s ( x ) q 1 ( x ) + t ( x ) q 2 ( x ) ) g ( x ) s(x)f_1(x)+t(x)f_2(x)=(s(x)q_1(x)+t(x)q_2(x))g(x) s(x)f1(x)+t(x)f2(x)=(s(x)q1(x)+t(x)q2(x))g(x)一定是 g ( x ) g(x) g(x)的倍式


定义3.8 公因式、最高公因式(首项系数为1,次数最高)、互素


定理3.10 欧几里得辗转相除法
r i ( x ) = q i + 1 ( x ) r i + 1 ( x ) + r i + 2 ( x ) r_i(x)=q_{i+1}(x)r_{i+1}(x)+r_{i+2}(x) ri(x)=qi+1(x)ri+1(x)+ri+2(x)

  1. 经过有限步之后,余式必然为0。
  2. 存在多项式 s ( x ) , t ( x ) ∈ F [ x ] s(x),t(x)\in \mathbb F[x] s(x),t(x)F[x],使得 s ( x ) r 0 ( x ) + t ( x ) r 1 ( x ) = r n ( x ) s(x)r_0(x)+t(x)r_1(x)=r_n(x) s(x)r0(x)+t(x)r1(x)=rn(x)
  3. r n ( x ) r_n(x) rn(x)首项系数为 c c c,则 ( r 0 ( x ) , r 1 ( x ) ) = c − 1 r n ( x ) (r_0(x), r_1(x))=c^{-1}r_n(x) (r0(x),r1(x))=c1rn(x),且最高公因式唯一存在。
  4. 对于任意 c ( x ) ∈ F ( x ) c(x)\in \mathbb F(x) c(x)F(x),如果 c ( x ) ∣ r 0 ( x ) , c ( x ) ∣ r 1 ( x ) c(x)|r_0(x),c(x)|r_1(x) c(x)r0(x),c(x)r1(x),那么 c ( x ) ∣ ( r 0 ( x ) , r 1 ( x ) ) c(x)|(r_0(x),r_1(x)) c(x)(r0(x),r1(x))

推论 多项式的裴蜀定理(描述、证明略)


定理3.11 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)为域 F \mathbb F F上两个不全为0的多项式,则对于任意 k ( x ) ∈ F [ x ] , ( f ( x ) + g ( x ) k ( x ) , g ( x ) ) = ( f ( x ) , g ( x ) ) k(x)\in \mathbb F[x],(f(x)+g(x)k(x),g(x))=(f(x),g(x)) k(x)F[x],(f(x)+g(x)k(x),g(x))=(f(x),g(x))
类比整数,证明略。


定理3.12 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x)为域 F \mathbb F F上的多项式, p ( x ) p(x) p(x)为域 F \mathbb F F上的不可约多项式,且 p ( x ) ∣ f 1 ( x ) f 2 ( x ) p(x)|f_1(x)f_2(x) p(x)f1(x)f2(x),若 ( p ( x ) , f 1 ( x ) ) = 1 (p(x),f_1(x))=1 (p(x),f1(x))=1,则 p ( x ) ∣ f 2 ( x ) p(x)|f_2(x) p(x)f2(x)
类比整数,证明使用定理3.10推论证明,略。


定理3.13 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x)为域 F \mathbb F F上的多项式, p ( x ) p(x) p(x)为域 F \mathbb F F上的不可约多项式,且 p ( x ) ∣ f 1 ( x ) f 2 ( x ) p(x)|f_1(x)f_2(x) p(x)f1(x)f2(x),则 p ( x ) ∣ f 1 ( x ) p(x)|f_1(x) p(x)f1(x) p ( x ) ∣ f 2 ( x ) p(x)|f_2(x) p(x)f2(x)
类比整数,证明略。


定理3.14 唯一因式分解定理:设 f ( x ) f(x) f(x)是域 F \mathbb F F上次数大于0的多项式,则 f ( x ) f(x) f(x)可以唯一地表示为域 F \mathbb F F上一些次数大于0的不可约多项式的乘积。特别地,若 f ( x ) f(x) f(x)为首1多项式,且
f ( x ) = p 1 ( x ) p 2 ( x ) . . . p s ( x ) = q 1 ( x ) q 2 ( x ) . . . q t ( x ) f(x)=p_1(x)p_2(x)...p_s(x)=q_1(x)q_2(x)...q_t(x) f(x)=p1(x)p2(x)...ps(x)=q1(x)q2(x)...qt(x)
其中 p i ( x ) , q i ( x ) p_i(x),q_i(x) pi(x),qi(x)为域 F \mathbb F F上次数大于0的首1不可约多项式,则有 s = t s=t s=t,经过适当调整可以使得对任意 i i i均有 p i ( x ) = q i ( x ) p_i(x)=q_i(x) pi(x)=qi(x)

证明方法:归纳法。略


定义3.9 根:设 f ( x ) f(x) f(x)为域 F \mathbb F F上的多项式,如果 a ∈ F a\in \mathbb F aF使得 f ( a ) = 0 f(a)=0 f(a)=0,则称 a a a f ( x ) f(x) f(x)在域 F \mathbb F F上的一个根。


定理3.15 余元定理:设 f ( x ) f(x) f(x)为域 F \mathbb F F上的多项式,对于任意 a ∈ F a\in \mathbb F aF,存在 g ( x ) ∈ F [ x ] g(x)\in \mathbb F[x] g(x)F[x]使得 f ( x ) = ( x − a ) g ( x ) + f ( a ) f(x)=(x-a)g(x)+f(a) f(x)=(xa)g(x)+f(a)

证明方法: f ( x ) = ( x − a ) g ( x ) + c f(x)=(x-a)g(x)+c f(x)=(xa)g(x)+c,代入 a a a即可。

本定理可以这样理解:将其看成域上离散的中值定理—— f ( x ) − f ( a ) x − a = g ( x ) \frac{f(x)-f(a)}{x-a}=g(x) xaf(x)f(a)=g(x),认为中值定理在域上也成立。但是实际上写的时候不能写分式,因为并没有定义除这个运算。

推论1 f ( x ) f(x) f(x)为域 F \mathbb F F上的多项式, a a a f ( x ) f(x) f(x)在域 F \mathbb F F的根的充要条件为 ( x − a ) ∣ f ( x ) (x-a)|f(x) (xa)f(x)
推论2 f ( x ) f(x) f(x)为域 F \mathbb F F上的多项式,如果 a 1 , a 2 , . . . a m a_1,a_2,...a_m a1,a2,...am f ( x ) f(x) f(x)在域 F \mathbb F F的根,则存在 n − m n-m nm次多项式 g ( x ) ∈ F [ x ] g(x)\in \mathbb F[x] g(x)F[x]使得 f ( x ) = ( x − a 1 ) ( x − a 2 ) . . . ( x − a m ) g ( x ) f(x)=(x-a_1)(x-a_2)...(x-a_m)g(x) f(x)=(xa1)(xa2)...(xam)g(x)
推论3 f ( x ) f(x) f(x)为域 F \mathbb F F上的多项式,则 f ( x ) f(x) f(x) F \mathbb F F的任意扩域中,不同根的个数不会超过 n n n(证明使用推论2证明)


定理3.16 f ( x ) f(x) f(x)是域 F \mathbb F F上的 n ≥ 1 n\ge 1 n1次不可约多项式,集合 F [ x ] f ( x ) = { ∑ i = 0 n − 1 a i x i ∣ a i ∈ F } \mathbb F[x]_{f(x)}=\{\sum_{i=0}^{n-1}a_ix^i|a_i\in\mathbb F\} F[x]f(x)={i=0n1aixiaiF}按照模 f ( x ) f(x) f(x)的模加和模乘形成一个域。特别地,若 f ( x ) f(x) f(x)是有限域 F q \mathbb F_q Fq上的 n n n次不可约多项式,则 F [ x ] f ( x ) = { ∑ i = 0 n − 1 a i x i ∣ a i ∈ F q } \mathbb F[x]_{f(x)}=\{\sum_{i=0}^{n-1}a_ix^i|a_i\in\mathbb F_q\} F[x]f(x)={i=0n1aixiaiFq}按照模 f ( x ) f(x) f(x)的模加和模乘形成一个元素个数为 q n q^n qn的有限域。

证明方法:证明该运算系统满足域的每条性质。每个项的系数都可以取q个值,因此构造的域的元素个数为 q n q^n qn

F q [ x ] f ( x ) ∗ \mathbb F_q[x]^*_{f(x)} Fq[x]f(x)表示 F q [ x ] f ( x ) \mathbb F_q[x]_{f(x)} Fq[x]f(x)的乘法群,其元素个数为 q n − 1 q^n-1 qn1

注意:任何次数大于等于n的多项式在 F [ x ] f ( x ) \mathbb F[x]_{f(x)} F[x]f(x)中均等于一个次数小于n的多项式,每一项的系数关于 F \mathbb F F取余,整个多项式关于 f ( x ) f(x) f(x)取余


定理3.17 f ( x ) f(x) f(x)是域 F \mathbb F F上的一个次数大于0的不可约多项式,那么 f ( x ) f(x) f(x)必然在 F \mathbb F F的某个扩域中有根。

证明方法:使用定理3.16构造的扩域。

举例:定义在 Z 2 \mathbb Z_2 Z2上的多项式 f ( x ) = x 2 + 1 f(x)=x^2+1 f(x)=x2+1在其上不可约,因此构造扩域,集合元素为 { 0 , 1 , x , x + 1 } \{0,1,x,x+1\} {0,1,x,x+1},则显然有 f ( x ) = x 2 + 1 = 0 f(x)=x^2+1=0 f(x)=x2+1=0,即 f ( x ) = 0 f(x)=0 f(x)=0,x是多项式的一个根。(这里的x指的是扩域中的x,不要混淆了)

推论 F \mathbb F F上的任意一个次数为 n ≥ 1 n\ge 1 n1的多项式,必然在 F \mathbb F F的扩域中可以分解为 n n n个一次不可约多项式的乘积。


定理3.18 E \mathbb E E是有限域, F q \mathbb F_q Fq是其q元子域,则存在正整数n使得 ∣ E ∣ = q n |\mathbb E|=q^n E=qn

证明方法:逐步扩大法。 F q = E 1 \mathbb F_q=\mathbb E_1 Fq=E1如果存在 β ∈ E ∖ E 1 \beta\in \mathbb E \setminus \mathbb E_1 βEE1,那么定义 E 2 = { a 0 + a 1 β ∣ a 0 , a 1 ∈ F q } \mathbb E_2=\{a_0+a_1\beta|a_0,a_1\in\mathbb F_q\} E2={a0+a1βa0,a1Fq},其元素个数为 q 2 q^2 q2,如果还存在不在 E 2 \mathbb E_2 E2的元素,则继续扩展,直到 E n = E \mathbb E_n=\mathbb E En=E为止。

注意:这其中的 E i \mathbb E_i Ei不一定是一个域!在严格证明中将其描述为集合。

推论 有限域的元素个数必为 p n p^n pn,其中 p p p为素数。任何有限域都是其素域的扩域。


定理3.19 F q \mathbb F_q Fq为q元有限域, F \mathbb F F F q \mathbb F_q Fq的扩域, α ∈ F \alpha\in\mathbb F αF,那么 α \alpha α是多项式 x q − x x^q-x xqx的根当且仅当 α ∈ F q \alpha\in\mathbb F_q αFq

证明方法:对于任意 α ∈ F q \alpha\in\mathbb F_q αFq α q − α = ( e + e + e + . . . + e ) q − α = e q + e q + . . . + e q − α = α − α = 0 \alpha^q-\alpha=(e+e+e+...+e)^q-\alpha=e^q+e^q+...+e^q-\alpha=\alpha-\alpha=0 αqα=(e+e+e+...+e)qα=eq+eq+...+eqα=αα=0,故 x q − x x^q-x xqx的根是 F q \mathbb F_q Fq的所有元素,而其也只有这么多根(次数限制)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值