Chapter 3 有限域
定义3.1 设 F \mathbb F F为一个非空集合,在其上定义两种运算:加法和乘法,这两种运算在集合上封闭,且满足下列条件:
- F \mathbb F F中所有元素对于加法形成加法交换群
- F \mathbb F F中所有非零元素(记为 F ∗ \mathbb F^* F∗)对于乘法构成乘法交换群
- 任意 F \mathbb F F中元素满足乘法对加法的交换律(与实数集中的交换律形式上相同)
则称
F
\mathbb F
F对于规定的乘法和加法构成一个域。
一个域至少有两个元素:加法群零元(称为域的零元,
0
0
0)和乘法单位元(称为域的单位元,
e
e
e)。域元素个数有限称为有限域或伽罗华域,否则称为无限域。有理数集合
Q
\mathbb Q
Q和复数集合
C
\mathbb C
C按定义的加法和乘法均为域
定义3.2 设 F \mathbb F F是一个域, F 0 \mathbb F_0 F0是 F \mathbb F F的非空子集,如果对于 F \mathbb F F上的加法和乘法, F 0 \mathbb F_0 F0本身也是一个域,则称 F 0 \mathbb F_0 F0是 F \mathbb F F的子域, F \mathbb F F是 F 0 \mathbb F_0 F0的扩域,记作 F 0 ⊊ F \mathbb F_0\subsetneq\mathbb F F0⊊F
定理3.1 设 F 0 \mathbb F_0 F0, F 0 ∗ \mathbb F_0^* F0∗均是域 F \mathbb F F的非空子集,当且仅当下面两个条件成立时 F 0 \mathbb F_0 F0是 F \mathbb F F的子域:
- 对于任意 a , b ∈ F 0 a, b\in \mathbb F_0 a,b∈F0,都有 − a , a + b ∈ F 0 -a, a+b\in\mathbb F_0 −a,a+b∈F0
- 对于任意非零元素 a , b ∈ F 0 a, b\in\mathbb F_0 a,b∈F0,都有 a − 1 , a b ∈ F 0 a^{-1}, ab\in\mathbb F_0 a−1,ab∈F0
证明方法:需要证明
F
0
\mathbb F_0
F0是
F
\mathbb F
F的加法子群,
F
0
∗
\mathbb F_0^*
F0∗是
F
\mathbb F
F的乘法子群。这个证明与证明子群很相似。
∵
a
,
−
a
∈
F
0
,
∴
0
∈
F
0
\because a,-a\in\mathbb F_0, \therefore0\in\mathbb F_0
∵a,−a∈F0,∴0∈F0,有加法单位元,每个元素有逆元。
∵
∀
a
,
b
∈
F
0
,
a
+
b
∈
F
0
\because \forall a, b\in \mathbb F_0, a+b\in \mathbb F_0
∵∀a,b∈F0,a+b∈F0,故运算封闭。
该运算由于在
F
\mathbb F
F中构成域,因此满足交换律与结合律。因此
F
0
\mathbb F_0
F0是
F
\mathbb F
F的加法子群。
∵
∀
a
∈
F
0
,
a
−
1
∈
F
0
\because \forall a\in\mathbb F_0, a^{-1}\in\mathbb F_0
∵∀a∈F0,a−1∈F0,故每个元素有逆元,有乘法单位元
e
e
e
∵
∀
a
,
b
∈
F
0
,
a
b
∈
F
0
\because \forall a, b\in \mathbb F_0, ab\in \mathbb F_0
∵∀a,b∈F0,ab∈F0,故运算封闭。
该运算由于在
F
\mathbb F
F中构成域,因此满足交换律与结合律。因此
F
0
∗
\mathbb F_0^*
F0∗是
F
\mathbb F
F的乘法子群。
由于这两个运算在
F
\mathbb F
F中满足分配律,因此在
F
0
\mathbb F_0
F0中同样满足。
□
\Box
□
定义 a − n = ( a n ) − 1 a^{-n}=(a^n)^{-1} a−n=(an)−1,当 a ≠ 0 a\ne 0 a=0时,定义 a 0 = e a^0=e a0=e。
定理3.2 设 F \mathbb F F是一个域,那么:
- 对于任意 a ∈ F a\in\mathbb F a∈F, 0 a = a 0 = 0 0a=a0=0 0a=a0=0;
- 对于任意 a , b ∈ F a,b\in\mathbb F a,b∈F,若 a b = 0 ab=0 ab=0,则 a = 0 a=0 a=0或 b = 0 b=0 b=0
证明方法:
0
a
=
(
0
+
0
)
a
0a=(0+0)a
0a=(0+0)a 证明1
若
a
≠
0
a\ne 0
a=0,则
a
b
=
a
−
1
a
b
=
b
=
0
ab=a^{-1}ab=b=0
ab=a−1ab=b=0,若
b
=
0
b=0
b=0同理。
在域中,二项式定理成立。
定理3.3 设
F
\mathbb F
F是一个域,
a
,
b
∈
F
a,b\in\mathbb F
a,b∈F,对于任意正整数
n
n
n,有
(
a
+
b
)
n
=
∑
i
=
0
n
C
n
i
a
n
−
i
b
i
=
∑
i
=
0
n
(
n
i
)
a
n
−
i
b
i
(a+b)^n=\sum_{i=0}^n C_n^i a^{n-i} b^i =\sum_{i=0}^n\begin{pmatrix}n\\i\end{pmatrix}a^{n-i} b^i
(a+b)n=i=0∑nCnian−ibi=i=0∑n(ni)an−ibi
证明方法:分配律易证。
定义3.3 设 F \mathbb F F是一个域,如果存在正整数 m m m,使得对于任意 a ∈ F a\in\mathbb F a∈F均有 m a = 0 ma=0 ma=0,则在所有满足上述条件的m中,最小的正整数称为域 F \mathbb F F的特征。如果 m m m不存在则称 F \mathbb F F的特征为0。特征记作 c h a r ( F ) char(\mathbb F) char(F)。
定义3.4 设
F
,
k
\mathbb F, \mathbb k
F,k是两个域,如果存在
F
\mathbb F
F到
k
\mathbb k
k的一一映射
δ
\delta
δ,使得对于任意
a
,
b
∈
F
a,b\in\mathbb F
a,b∈F,均有
δ
(
a
+
F
b
)
=
δ
(
a
)
+
k
δ
(
b
)
,
δ
(
a
×
F
b
)
=
δ
(
a
)
×
k
δ
(
b
)
\delta(a+_{\mathbb F}b)=\delta(a)+_{\mathbb k}\delta(b), \delta(a\times_{\mathbb F} b)=\delta(a)\times_{\mathbb k}\delta(b)
δ(a+Fb)=δ(a)+kδ(b),δ(a×Fb)=δ(a)×kδ(b)
则称
δ
\delta
δ为
F
\mathbb F
F到
k
\mathbb k
k的同构映射,称
F
,
k
\mathbb F, \mathbb k
F,k同构,记作
F
≅
k
\mathbb F\cong\mathbb k
F≅k。如果
F
=
k
\mathbb F=\mathbb k
F=k则称
δ
\delta
δ为自同构映射,若对于任意
a
∈
F
a\in\mathbb F
a∈F均有
δ
(
a
)
=
a
\delta(a)=a
δ(a)=a,则称
δ
\delta
δ为恒等自同构映射。一个域的最小子域称为该域的素域。
定理3.4 设 F \mathbb F F是一个域,则 c h a r ( F ) char(\mathbb F) char(F)为0或某个素数 p p p。特征为素数 p p p的域的素域与 Z p \mathbb Z_p Zp同构,特征为0的域的素域与 Q \mathbb Q Q同构。
证明方法:此证明显然需要分为三个部分进行。
首先证明特征为0或素数。如果特征不是素数,则可写为
s
×
t
s\times t
s×t的形式,也即
∀
a
∈
F
,
(
s
t
)
a
=
s
t
a
=
0
\forall a\in \mathbb F, (st)a=sta=0
∀a∈F,(st)a=sta=0,故
s
a
=
0
sa=0
sa=0或
t
a
=
0
ta=0
ta=0。此时特征就应该是
s
s
s或
t
t
t而非
s
t
st
st。
当
F
\mathbb F
F是一个域且特征不为0时,其所有子域显然均需要包含
0
0
0和
e
e
e,由于需要满足运算的封闭性,所以还需要包含
2
e
,
3
e
,
.
.
.
,
(
p
−
1
)
e
2e, 3e, ...,(p-1)e
2e,3e,...,(p−1)e。由这些元素构成的集合容易证明其是一个域(需要注意乘法逆元的证明,由于
p
p
p是素数,故对于任意的
0
<
k
<
p
0<k<p
0<k<p,均能找到其关于模
p
p
p的逆元,也就是对应的乘法逆元),因此这就是
F
\mathbb F
F上最小的域。同构映射
δ
(
k
e
)
=
k
\delta(ke)=k
δ(ke)=k与
Z
p
\mathbb Z_p
Zp构成同构。
当
F
\mathbb F
F的特征为0时,同样其所有子域均需要包含
0
,
e
,
2
e
,
3
e
,
.
.
.
0,e,2e,3e,...
0,e,2e,3e,...。由加法运算的封闭性,还需要包含
−
e
,
−
2
e
,
−
3
e
,
.
.
.
-e,-2e,-3e,...
−e,−2e,−3e,...。又由于需要满足乘法逆元也包含于域中,所以
e
−
1
,
2
e
−
1
,
.
.
.
−
e
−
1
,
−
2
e
−
1
,
.
.
.
e^{-1}, 2e^{-1},...-e^{-1},-2e^{-1},...
e−1,2e−1,...−e−1,−2e−1,...也在子域中。又需要满足乘法的封闭性,故任意子域均需包含
F
0
=
{
(
a
e
)
(
b
e
)
−
1
∣
a
,
b
∈
Z
,
b
≠
0
}
\mathbb F_0=\{(ae)(be)^{-1}|a,b\in\mathbb Z,b\ne 0\}
F0={(ae)(be)−1∣a,b∈Z,b=0}。这个集合容易证明域的所有判定性质,因此其本身就是一个域,而且是最小的子域。同构映射
δ
(
(
a
e
)
(
b
e
)
−
1
)
=
a
b
\delta((ae)(be)^{-1})=\frac{a}{b}
δ((ae)(be)−1)=ba与
Q
\mathbb Q
Q构成同构。
定理3.5 设
F
\mathbb F
F是一个域,
c
h
a
r
(
F
)
=
p
char(\mathbb F)=p
char(F)=p,则对于任意
a
,
b
∈
F
,
n
≥
0
a,b\in\mathbb F,n\ge 0
a,b∈F,n≥0,均有
(
a
±
b
)
p
n
=
a
p
n
±
b
p
n
(a\pm b)^{p^n}=a^{p^n}\pm b^{p^n}
(a±b)pn=apn±bpn
证明方法:首先使用二项式定理证明
(
a
+
b
)
p
=
a
p
+
b
p
(a+b)^p=a^p+b^p
(a+b)p=ap+bp:
(
a
+
b
)
p
(a+b)^p
(a+b)p中的第i项为
p
!
i
!
(
p
−
i
)
!
a
i
b
p
−
i
\frac{p!}{i!(p-i)!}a^ib^{p-i}
i!(p−i)!p!aibp−i,即证明
p
!
i
!
(
p
−
i
)
!
\frac{p!}{i!(p-i)!}
i!(p−i)!p!是
p
p
p的倍数
(
i
≠
0
,
i
≠
p
)
(i\ne 0,i\ne p)
(i=0,i=p)。显然这是一个整数,且
p
!
i
!
(
p
−
i
)
!
=
p
×
(
p
−
1
)
!
i
!
(
p
−
i
)
!
\frac{p!}{i!(p-i)!}=p\times \frac{(p-1)!}{i!(p-i)!}
i!(p−i)!p!=p×i!(p−i)!(p−1)!。后面的数不可能是分数,因为如果是,那么分母必然是
p
p
p的倍数,但是分母显然与
p
p
p互素。因此后面的数是整数,也就是说这个数能够被
p
p
p整除。故得证第一项。
然后使用数学归纳法,用类似的方式证明后面的式子即可。
定义3.5 对于非负整数
i
i
i,
a
i
x
i
,
a
i
∈
F
a_ix^i,a_i\in\mathbb F
aixi,ai∈F表示域
F
\mathbb F
F上文字为x的单项式,称形式和
f
(
x
)
=
a
n
x
n
+
a
n
−
1
x
n
−
1
+
.
.
.
+
a
1
x
1
+
a
0
x
0
,
a
i
∈
F
f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0x^0,a_i\in\mathbb F
f(x)=anxn+an−1xn−1+...+a1x1+a0x0,ai∈F为域上文字为x的多项式,简称域
F
\mathbb F
F上的多项式。
a
i
x
i
a_ix^i
aixi称为
f
(
x
)
f(x)
f(x)的
i
i
i次项,
a
i
a_i
ai称为
f
(
x
)
f(x)
f(x)的
i
i
i次项系数。当
a
n
≠
0
a_n\ne 0
an=0时,称该多项式为n次多项式,
a
n
a_n
an称为
f
(
x
)
f(x)
f(x)的首项系数,多项式
f
(
x
)
f(x)
f(x)的次数称为
deg
f
(
x
)
\deg f(x)
degf(x)。如果多项式各项系数均为0,称为零多项式,记为0,次数规定为
−
∞
-\infty
−∞。
域
F
\mathbb F
F上文字为x的所有多项式的集合用符号
F
[
x
]
\mathbb F[x]
F[x]表示,规定
x
0
=
1
∈
F
,
a
0
x
0
=
a
0
∈
F
x^0=1\in\mathbb F,a_0x^0=a_0\in\mathbb F
x0=1∈F,a0x0=a0∈F,则有
F
⊊
F
[
x
]
\mathbb F\subsetneq\mathbb F[x]
F⊊F[x]。注意按照上面的定义,
F
[
x
]
\mathbb F[x]
F[x]不是域。
关于多项式次数,下面结论成立:
deg
(
f
(
x
)
+
g
(
x
)
)
≤
m
a
x
{
deg
f
(
x
)
,
deg
g
(
x
)
}
deg
(
f
(
x
)
g
(
x
)
)
=
deg
f
(
x
)
+
deg
g
(
x
)
\deg (f(x)+g(x))\le max\{\deg f(x), \deg g(x)\} \\\deg(f(x)g(x))=\deg f(x)+\deg g(x)
deg(f(x)+g(x))≤max{degf(x),degg(x)}deg(f(x)g(x))=degf(x)+degg(x)
注意:这里的x可以表示任意的东西而不仅限于 F \mathbb F F,即anything,但是需要定义次方。
定理3.6 设
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)为域
F
\mathbb F
F上的两个多项式,
g
(
x
)
≠
0
g(x)\ne 0
g(x)=0,则存在唯一一对多项式
q
(
x
)
,
r
(
x
)
q(x),r(x)
q(x),r(x)使得
f
(
x
)
=
q
(
x
)
g
(
x
)
+
r
(
x
)
,
deg
r
(
x
)
<
deg
g
(
x
)
f(x)=q(x)g(x)+r(x),\deg r(x)<\deg g(x)
f(x)=q(x)g(x)+r(x),degr(x)<degg(x)
注意:不要看系数能否被整除,而应该注意到域的性质。由于域的特征只可能为素数或0,因此不要想当然地用诸如
5
x
2
+
1
5x^2+1
5x2+1和
2
x
2
+
4
2x^2+4
2x2+4来挑战这条定理,因为整数集并不是域!
证明方法:归纳。
存在性易证,总存在一个系数能够消去被除式的最高次项(利用乘法逆元)
唯一性:
(
q
(
x
)
−
q
′
(
x
)
)
g
(
x
)
=
r
′
(
x
)
−
r
(
x
)
,
deg
(
r
′
(
x
)
−
r
(
x
)
)
<
deg
g
(
x
)
(q(x)-q'(x))g(x)=r'(x)-r(x),\deg (r'(x)-r(x))<\deg g(x)
(q(x)−q′(x))g(x)=r′(x)−r(x),deg(r′(x)−r(x))<degg(x),故
q
(
x
)
=
q
′
(
x
)
,
r
(
x
)
=
r
′
(
x
)
q(x)=q'(x), r(x)=r'(x)
q(x)=q′(x),r(x)=r′(x)
定理中的式子称为多项式带余除法算式, r ( x ) r(x) r(x)称为余式,记作 ( f ( x ) ) g ( x ) = r ( x ) (f(x))_{g(x)}=r(x) (f(x))g(x)=r(x)
定理3.7 多项式满足模加和模乘运算。证明略。
定义3.6
整除:
r
(
x
)
=
0
r(x)=0
r(x)=0
倍式与因式
真因式:次数小于倍式的因式
定义3.7
可约多项式:不含次数大于0的真因式的多项式
不可约多项式
定理3.8 域 F \mathbb F F上多项式 f ( x ) f(x) f(x)可约,则当且仅当存在两个域 F \mathbb F F上多项式 f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x), deg f 1 ( x ) < deg f ( x ) , deg f 2 ( x ) < deg f ( x ) \deg f_1(x)<\deg f(x), \deg f_2(x)<\deg f(x) degf1(x)<degf(x),degf2(x)<degf(x),使得 f ( x ) = f 1 ( x ) f 2 ( x ) f(x)=f_1(x)f_2(x) f(x)=f1(x)f2(x)
证明略。
定理3.9 如果有 g ( x ) ∣ f 1 ( x ) , g ( x ) ∣ f 2 ( x ) g(x)|f_1(x), g(x)|f_2(x) g(x)∣f1(x),g(x)∣f2(x),则任意多项式 s ( x ) , t ( x ) s(x),t(x) s(x),t(x),有 g ( x ) ∣ s ( x ) f 1 ( x ) + t ( x ) f 2 ( x ) g(x)|s(x)f_1(x)+t(x)f_2(x) g(x)∣s(x)f1(x)+t(x)f2(x)
证明方法:
设
f
1
(
x
)
=
g
(
x
)
q
1
(
x
)
,
f
2
(
x
)
=
g
(
x
)
q
2
(
x
)
f_1(x)=g(x)q_1(x),f_2(x)=g(x)q_2(x)
f1(x)=g(x)q1(x),f2(x)=g(x)q2(x)
则
s
(
x
)
f
1
(
x
)
+
t
(
x
)
f
2
(
x
)
=
(
s
(
x
)
q
1
(
x
)
+
t
(
x
)
q
2
(
x
)
)
g
(
x
)
s(x)f_1(x)+t(x)f_2(x)=(s(x)q_1(x)+t(x)q_2(x))g(x)
s(x)f1(x)+t(x)f2(x)=(s(x)q1(x)+t(x)q2(x))g(x)一定是
g
(
x
)
g(x)
g(x)的倍式
定义3.8 公因式、最高公因式(首项系数为1,次数最高)、互素
定理3.10 欧几里得辗转相除法
r
i
(
x
)
=
q
i
+
1
(
x
)
r
i
+
1
(
x
)
+
r
i
+
2
(
x
)
r_i(x)=q_{i+1}(x)r_{i+1}(x)+r_{i+2}(x)
ri(x)=qi+1(x)ri+1(x)+ri+2(x)
- 经过有限步之后,余式必然为0。
- 存在多项式 s ( x ) , t ( x ) ∈ F [ x ] s(x),t(x)\in \mathbb F[x] s(x),t(x)∈F[x],使得 s ( x ) r 0 ( x ) + t ( x ) r 1 ( x ) = r n ( x ) s(x)r_0(x)+t(x)r_1(x)=r_n(x) s(x)r0(x)+t(x)r1(x)=rn(x)。
- 设 r n ( x ) r_n(x) rn(x)首项系数为 c c c,则 ( r 0 ( x ) , r 1 ( x ) ) = c − 1 r n ( x ) (r_0(x), r_1(x))=c^{-1}r_n(x) (r0(x),r1(x))=c−1rn(x),且最高公因式唯一存在。
- 对于任意 c ( x ) ∈ F ( x ) c(x)\in \mathbb F(x) c(x)∈F(x),如果 c ( x ) ∣ r 0 ( x ) , c ( x ) ∣ r 1 ( x ) c(x)|r_0(x),c(x)|r_1(x) c(x)∣r0(x),c(x)∣r1(x),那么 c ( x ) ∣ ( r 0 ( x ) , r 1 ( x ) ) c(x)|(r_0(x),r_1(x)) c(x)∣(r0(x),r1(x))
推论 多项式的裴蜀定理(描述、证明略)
定理3.11 设
f
(
x
)
,
g
(
x
)
f(x),g(x)
f(x),g(x)为域
F
\mathbb F
F上两个不全为0的多项式,则对于任意
k
(
x
)
∈
F
[
x
]
,
(
f
(
x
)
+
g
(
x
)
k
(
x
)
,
g
(
x
)
)
=
(
f
(
x
)
,
g
(
x
)
)
k(x)\in \mathbb F[x],(f(x)+g(x)k(x),g(x))=(f(x),g(x))
k(x)∈F[x],(f(x)+g(x)k(x),g(x))=(f(x),g(x))
类比整数,证明略。
定理3.12 设
f
1
(
x
)
,
f
2
(
x
)
f_1(x),f_2(x)
f1(x),f2(x)为域
F
\mathbb F
F上的多项式,
p
(
x
)
p(x)
p(x)为域
F
\mathbb F
F上的不可约多项式,且
p
(
x
)
∣
f
1
(
x
)
f
2
(
x
)
p(x)|f_1(x)f_2(x)
p(x)∣f1(x)f2(x),若
(
p
(
x
)
,
f
1
(
x
)
)
=
1
(p(x),f_1(x))=1
(p(x),f1(x))=1,则
p
(
x
)
∣
f
2
(
x
)
p(x)|f_2(x)
p(x)∣f2(x)
类比整数,证明使用定理3.10推论证明,略。
定理3.13 设
f
1
(
x
)
,
f
2
(
x
)
f_1(x),f_2(x)
f1(x),f2(x)为域
F
\mathbb F
F上的多项式,
p
(
x
)
p(x)
p(x)为域
F
\mathbb F
F上的不可约多项式,且
p
(
x
)
∣
f
1
(
x
)
f
2
(
x
)
p(x)|f_1(x)f_2(x)
p(x)∣f1(x)f2(x),则
p
(
x
)
∣
f
1
(
x
)
p(x)|f_1(x)
p(x)∣f1(x)或
p
(
x
)
∣
f
2
(
x
)
p(x)|f_2(x)
p(x)∣f2(x)
类比整数,证明略。
定理3.14 唯一因式分解定理:设
f
(
x
)
f(x)
f(x)是域
F
\mathbb F
F上次数大于0的多项式,则
f
(
x
)
f(x)
f(x)可以唯一地表示为域
F
\mathbb F
F上一些次数大于0的不可约多项式的乘积。特别地,若
f
(
x
)
f(x)
f(x)为首1多项式,且
f
(
x
)
=
p
1
(
x
)
p
2
(
x
)
.
.
.
p
s
(
x
)
=
q
1
(
x
)
q
2
(
x
)
.
.
.
q
t
(
x
)
f(x)=p_1(x)p_2(x)...p_s(x)=q_1(x)q_2(x)...q_t(x)
f(x)=p1(x)p2(x)...ps(x)=q1(x)q2(x)...qt(x)
其中
p
i
(
x
)
,
q
i
(
x
)
p_i(x),q_i(x)
pi(x),qi(x)为域
F
\mathbb F
F上次数大于0的首1不可约多项式,则有
s
=
t
s=t
s=t,经过适当调整可以使得对任意
i
i
i均有
p
i
(
x
)
=
q
i
(
x
)
p_i(x)=q_i(x)
pi(x)=qi(x)
证明方法:归纳法。略
定义3.9 根:设 f ( x ) f(x) f(x)为域 F \mathbb F F上的多项式,如果 a ∈ F a\in \mathbb F a∈F使得 f ( a ) = 0 f(a)=0 f(a)=0,则称 a a a是 f ( x ) f(x) f(x)在域 F \mathbb F F上的一个根。
定理3.15 余元定理:设 f ( x ) f(x) f(x)为域 F \mathbb F F上的多项式,对于任意 a ∈ F a\in \mathbb F a∈F,存在 g ( x ) ∈ F [ x ] g(x)\in \mathbb F[x] g(x)∈F[x]使得 f ( x ) = ( x − a ) g ( x ) + f ( a ) f(x)=(x-a)g(x)+f(a) f(x)=(x−a)g(x)+f(a)
证明方法:设 f ( x ) = ( x − a ) g ( x ) + c f(x)=(x-a)g(x)+c f(x)=(x−a)g(x)+c,代入 a a a即可。
本定理可以这样理解:将其看成域上离散的中值定理—— f ( x ) − f ( a ) x − a = g ( x ) \frac{f(x)-f(a)}{x-a}=g(x) x−af(x)−f(a)=g(x),认为中值定理在域上也成立。但是实际上写的时候不能写分式,因为并没有定义除这个运算。
推论1 设
f
(
x
)
f(x)
f(x)为域
F
\mathbb F
F上的多项式,
a
a
a为
f
(
x
)
f(x)
f(x)在域
F
\mathbb F
F的根的充要条件为
(
x
−
a
)
∣
f
(
x
)
(x-a)|f(x)
(x−a)∣f(x)
推论2 设
f
(
x
)
f(x)
f(x)为域
F
\mathbb F
F上的多项式,如果
a
1
,
a
2
,
.
.
.
a
m
a_1,a_2,...a_m
a1,a2,...am为
f
(
x
)
f(x)
f(x)在域
F
\mathbb F
F的根,则存在
n
−
m
n-m
n−m次多项式
g
(
x
)
∈
F
[
x
]
g(x)\in \mathbb F[x]
g(x)∈F[x]使得
f
(
x
)
=
(
x
−
a
1
)
(
x
−
a
2
)
.
.
.
(
x
−
a
m
)
g
(
x
)
f(x)=(x-a_1)(x-a_2)...(x-a_m)g(x)
f(x)=(x−a1)(x−a2)...(x−am)g(x)
推论3 设
f
(
x
)
f(x)
f(x)为域
F
\mathbb F
F上的多项式,则
f
(
x
)
f(x)
f(x)在
F
\mathbb F
F的任意扩域中,不同根的个数不会超过
n
n
n(证明使用推论2证明)
定理3.16 设 f ( x ) f(x) f(x)是域 F \mathbb F F上的 n ≥ 1 n\ge 1 n≥1次不可约多项式,集合 F [ x ] f ( x ) = { ∑ i = 0 n − 1 a i x i ∣ a i ∈ F } \mathbb F[x]_{f(x)}=\{\sum_{i=0}^{n-1}a_ix^i|a_i\in\mathbb F\} F[x]f(x)={∑i=0n−1aixi∣ai∈F}按照模 f ( x ) f(x) f(x)的模加和模乘形成一个域。特别地,若 f ( x ) f(x) f(x)是有限域 F q \mathbb F_q Fq上的 n n n次不可约多项式,则 F [ x ] f ( x ) = { ∑ i = 0 n − 1 a i x i ∣ a i ∈ F q } \mathbb F[x]_{f(x)}=\{\sum_{i=0}^{n-1}a_ix^i|a_i\in\mathbb F_q\} F[x]f(x)={∑i=0n−1aixi∣ai∈Fq}按照模 f ( x ) f(x) f(x)的模加和模乘形成一个元素个数为 q n q^n qn的有限域。
证明方法:证明该运算系统满足域的每条性质。每个项的系数都可以取q个值,因此构造的域的元素个数为 q n q^n qn
以 F q [ x ] f ( x ) ∗ \mathbb F_q[x]^*_{f(x)} Fq[x]f(x)∗表示 F q [ x ] f ( x ) \mathbb F_q[x]_{f(x)} Fq[x]f(x)的乘法群,其元素个数为 q n − 1 q^n-1 qn−1。
注意:任何次数大于等于n的多项式在 F [ x ] f ( x ) \mathbb F[x]_{f(x)} F[x]f(x)中均等于一个次数小于n的多项式,每一项的系数关于 F \mathbb F F取余,整个多项式关于 f ( x ) f(x) f(x)取余
定理3.17 设 f ( x ) f(x) f(x)是域 F \mathbb F F上的一个次数大于0的不可约多项式,那么 f ( x ) f(x) f(x)必然在 F \mathbb F F的某个扩域中有根。
证明方法:使用定理3.16构造的扩域。
举例:定义在 Z 2 \mathbb Z_2 Z2上的多项式 f ( x ) = x 2 + 1 f(x)=x^2+1 f(x)=x2+1在其上不可约,因此构造扩域,集合元素为 { 0 , 1 , x , x + 1 } \{0,1,x,x+1\} {0,1,x,x+1},则显然有 f ( x ) = x 2 + 1 = 0 f(x)=x^2+1=0 f(x)=x2+1=0,即 f ( x ) = 0 f(x)=0 f(x)=0,x是多项式的一个根。(这里的x指的是扩域中的x,不要混淆了)
推论 F \mathbb F F上的任意一个次数为 n ≥ 1 n\ge 1 n≥1的多项式,必然在 F \mathbb F F的扩域中可以分解为 n n n个一次不可约多项式的乘积。
定理3.18 设 E \mathbb E E是有限域, F q \mathbb F_q Fq是其q元子域,则存在正整数n使得 ∣ E ∣ = q n |\mathbb E|=q^n ∣E∣=qn。
证明方法:逐步扩大法。 F q = E 1 \mathbb F_q=\mathbb E_1 Fq=E1如果存在 β ∈ E ∖ E 1 \beta\in \mathbb E \setminus \mathbb E_1 β∈E∖E1,那么定义 E 2 = { a 0 + a 1 β ∣ a 0 , a 1 ∈ F q } \mathbb E_2=\{a_0+a_1\beta|a_0,a_1\in\mathbb F_q\} E2={a0+a1β∣a0,a1∈Fq},其元素个数为 q 2 q^2 q2,如果还存在不在 E 2 \mathbb E_2 E2的元素,则继续扩展,直到 E n = E \mathbb E_n=\mathbb E En=E为止。
注意:这其中的 E i \mathbb E_i Ei不一定是一个域!在严格证明中将其描述为集合。
推论 有限域的元素个数必为 p n p^n pn,其中 p p p为素数。任何有限域都是其素域的扩域。
定理3.19 设 F q \mathbb F_q Fq为q元有限域, F \mathbb F F为 F q \mathbb F_q Fq的扩域, α ∈ F \alpha\in\mathbb F α∈F,那么 α \alpha α是多项式 x q − x x^q-x xq−x的根当且仅当 α ∈ F q \alpha\in\mathbb F_q α∈Fq
证明方法:对于任意 α ∈ F q \alpha\in\mathbb F_q α∈Fq, α q − α = ( e + e + e + . . . + e ) q − α = e q + e q + . . . + e q − α = α − α = 0 \alpha^q-\alpha=(e+e+e+...+e)^q-\alpha=e^q+e^q+...+e^q-\alpha=\alpha-\alpha=0 αq−α=(e+e+e+...+e)q−α=eq+eq+...+eq−α=α−α=0,故 x q − x x^q-x xq−x的根是 F q \mathbb F_q Fq的所有元素,而其也只有这么多根(次数限制)。