信息安全数学基础 Chapter 4——二次剩余与方根

定义4.1 设m为正整数,若同余式 x 2 ≡ a ( m o d    m ) , ( a , m ) = 1 x^2\equiv a(\mod m),(a,m)=1 x2a(modm),(a,m)=1,有解,则a称为模m的二次剩余,否则称为模m的二次非剩余

定义4.2 勒让德符号: ( a p ) (\frac{a}{p}) (pa),当a为模p的二次剩余时,值为1;非2次剩余时值为-1,若 p ∣ a p|a pa则值为0

定理4.1 p为素数,若 a ≡ b ( m o d    p ) a\equiv b(\mod p) ab(modp),则 ( a p ) = ( b p ) (\frac{a}{p})=(\frac{b}{p}) (pa)=(pb)
求同余式 x 2 ≡ a ( m o d    p ) x^2\equiv a(\mod p) x2a(modp)的解可以看成是在有限域 Z p \mathbb Z_p Zp中求多项式 x 2 − a x^2-a x2a的根。

定理4.2 欧拉判别法则:p为奇素数,则对于任意整数a, ( a p ) ≡ a p − 1 2 ( m o d    p ) (\frac{a}{p})\equiv a^{\frac{p-1}{2}}(\mod p) (pa)a2p1(modp)
证明:
g g g Z p \mathbb Z_p Zp的本原元,则 Z p ∗ = { g 0 , g 1 , . . . , g p − 2 } \mathbb Z_p^*=\{g^0,g^1,...,g^{p-2}\} Zp={g0,g1,...,gp2}
对于所有 0 ≤ i ≤ p − 1 2 0\le i\le \frac{p-1}{2} 0i2p1 ( g 2 i ) p − 1 2 = ( g p − 1 ) i = 1 , ( g 2 i + 1 ) p − 1 2 = ( g p − 1 ) i g p − 1 2 , g p − 1 2 = − 1 (g^{2i})^{\frac{p-1}{2}}=(g^{p-1})^i=1,(g^{2i+1})^{\frac{p-1}{2}}=(g^{p-1})^ig^{\frac{p-1}{2}},g^{\frac{p-1}{2}}=-1 (g2i)2p1=(gp1)i=1,(g2i+1)2p1=(gp1)ig2p1,g2p1=1(由g为本原元可知 g p − 1 2 ≠ 1 g^{\frac{p-1}{2}}\ne 1 g2p1=1,但 ( g p − 1 2 ) 2 = 1 (g^{\frac{p-1}{2}})^2= 1 (g2p1)2=1,故其只能为-1),故 ( g p − 1 2 ) 2 i + 1 = − 1 (g^{\frac{p-1}{2}})^{2i+1}=-1 (g2p1)2i+1=1
由于考虑模p的二次同余式,因此a可以看做是 Z p \mathbb Z_p Zp中与之同余等价的元素
a ≡ g 2 i ( m o d    p ) , 0 ≤ i < p − 1 2 a\equiv g^{2i}(\mod p),0\le i<\frac{p-1}{2} ag2i(modp),0i<2p1,多项式 x 2 − a = x 2 − g 2 i x^2-a=x^2-g^{2i} x2a=x2g2i有根±gi,故 ( a p ) = 1 ≡ a p − 1 2 ( m o d    p ) (\frac{a}{p})=1\equiv a^{\frac{p-1}{2}}(\mod p) (pa)=1a2p1(modp)
a ≡ g 2 i + 1 ( m o d    p ) , 0 ≤ i < p − 1 2 a\equiv g^{2i+1}(\mod p),0\le i<\frac{p-1}{2} ag2i+1(modp),0i<2p1,多项式 x 2 − a = x 2 − g 2 i + 1 x^2-a=x^2-g^{2i+1} x2a=x2g2i+1一定没有根。否则若 x 0 2 = g 2 i + 1 x_0^2=g^{2i+1} x02=g2i+1,那么 1 = ( x 0 2 ) p − 1 2 = ( g 2 i + 1 ) p − 1 2 = − 1 1=(x_0^2)^{\frac{p-1}{2}}=(g^{2i+1})^{\frac{p-1}{2}}=-1 1=(x02)2p1=(g2i+1)2p1=1矛盾。故 ( a p ) = − 1 ≡ a p − 1 2 ( m o d    p ) (\frac{a}{p})=-1\equiv a^{\frac{p-1}{2}}(\mod p) (pa)=1a2p1(modp)

由上述定理可知,模p的二次剩余有 p − 1 2 \frac{p-1}{2} 2p1个(本原元的所有偶数次幂)

推论 设p为奇素数,则
( 1 p ) = 1 (\frac{1}{p})=1 (p1)=1
( − 1 p ) = ( − 1 ) p − 1 2 (\frac{-1}{p})=(-1)^\frac{p-1}{2} (p1)=(1)2p1
( a b p ) = ( a p ) ( b p ) (\frac{ab}{p})=(\frac{a}{p})(\frac{b}{p}) (pab)=(pa)(pb)
( a n p ) = ( a p ) n , n > 0 (\frac{a^n}{p})=(\frac{a}{p})^n,n>0 (pan)=(pa)n,n>0

定理4.3 设p为奇素数,则 ( 2 p ) = ( − 1 ) p 2 − 1 8 (\frac{2}{p})=(-1)^{\frac{p^2-1}{8}} (p2)=(1)8p21
证明:构造证明
( p − 1 ) ! ≡ 1 ⋅ 3 ⋅ 5 ⋅ . . . ⋅ ( p − 2 ) ⋅ 2 ⋅ 4 ⋅ . . . ⋅ ( p − 1 ) (p-1)!\equiv 1\cdot 3\cdot 5\cdot ... \cdot (p-2)\cdot 2\cdot 4\cdot ... \cdot (p-1) (p1)!135...(p2)24...(p1)
对于4k+1型的p有
≡ 1 ⋅ ( p − 2 ) ⋅ 3 ⋅ ( p − 4 ) ⋅ 5 ⋅ . . . ⋅ p − 3 2 ⋅ ( p − p − 1 2 ) ⋅ 2 p − 1 2 ⋅ ( p − 1 2 ! ) ( m o d    p ) \equiv 1\cdot (p-2)\cdot 3\cdot (p-4)\cdot 5\cdot ...\cdot \frac{p-3}{2}\cdot (p-\frac{p-1}{2})\cdot 2^{\frac{p-1}{2}}\cdot (\frac{p-1}{2}!)(\mod p) 1(p2)3(p4)5...2p3(p2p1)22p1(2p1!)(modp)(后面一半所有偶数提个2出来,前半部分可以交替提一个-1)
≡ ( − 1 ) p − 1 4 ⋅ 2 p − 1 2 ⋅ ( p − 1 2 ! ) 2 ( m o d    p ) \equiv (-1)^{\frac{p-1}{4}}\cdot 2^{\frac{p-1}{2}}\cdot(\frac{p-1}{2}!)^2(\mod p) (1)4p122p1(2p1!)2(modp)
对于4k+3型的p有
≡ 1 ⋅ ( p − 2 ) ⋅ 3 ⋅ ( p − 4 ) ⋅ 5 ⋅ . . . ⋅ ( p − p − 3 2 ) ⋅ p − 1 2 ⋅ 2 p − 1 2 ⋅ ( p − 1 2 ! ) ( m o d    p ) \equiv 1\cdot (p-2)\cdot 3\cdot (p-4)\cdot 5\cdot ...\cdot(p-\frac{p-3}{2})\cdot\frac{p-1}{2}\cdot 2^{\frac{p-1}{2}}\cdot (\frac{p-1}{2}!)(\mod p) 1(p2)3(p4)5...(p2p3)2p122p1(2p1!)(modp)
≡ ( − 1 ) p − 3 4 ⋅ 2 p − 1 2 ⋅ ( p − 1 2 ! ) 2 ( m o d    p ) \equiv (-1)^{\frac{p-3}{4}}\cdot 2^{\frac{p-1}{2}}\cdot(\frac{p-1}{2}!)^2(\mod p) (1)4p322p1(2p1!)2(modp)
Wilson定理知 ( p − 1 ) ! ≡ − 1 ( m o d    p ) (p-1)!\equiv -1(\mod p) (p1)!1(modp),及 ( p − 1 2 ! ) 2 ≡ ( − 1 ) p + 1 2 ( m o d    p ) (\frac{p-1}{2}!)^2\equiv(-1)^{\frac{p+1}{2}}(\mod p) (2p1!)2(1)2p+1(modp) (转化为 ( − 1 ) p − 1 2 ( p − 1 ) ! (-1)^{\frac{p-1}{2}}(p-1)! (1)2p1(p1)! 可知当 p ≡ ± 1 ( m o d    8 ) p\equiv ±1(\mod 8) p±1(mod8)时, 2 p − 1 2 ≡ 1 ( m o d    p ) 2^{\frac{p-1}{2}}\equiv 1(\mod p) 22p11(modp),当 p ≡ ± 3 ( m o d    8 ) p\equiv ±3(\mod 8) p±3(mod8)时, 2 p − 1 2 ≡ − 1 ( m o d    p ) 2^{\frac{p-1}{2}}\equiv -1(\mod p) 22p11(modp),综合验证得 2 p − 1 2 ≡ ( − 1 ) p 2 − 1 8 ( m o d    p ) 2^{\frac{p-1}{2}}\equiv(-1)^{\frac{p^2-1}{8}}(\mod p) 22p1(1)8p21(modp),由欧拉判别法则 ( 2 p ) = ( − 1 ) p 2 − 1 8 (\frac{2}{p})=(-1)^{\frac{p^2-1}{8}} (p2)=(1)8p21

定理4.4 二次互反律:p,q是互素奇素数,则 ( q p ) = ( − 1 ) p − 1 2 q − 1 2 ( p q ) (\frac{q}{p})=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}(\frac{p}{q}) (pq)=(1)2p12q1(qp)
证明:太复杂了,不要求掌握

定义4.3 雅可比符号: m = ∏ i = 1 n p i , p i m=\prod_{i=1}^np_i,p_i m=i=1npi,pi是奇素数,对于任意整数a定义a模m的雅可比符号为 ( a m ) = ∏ i = 1 n ( a p i ) (\frac{a}{m})=\prod_{i=1}^n(\frac{a}{p_i}) (ma)=i=1n(pia),m为奇素数时,其雅克比符号就是勒让德符号。

定理4.5 设m为正奇数, a ≡ b ( m o d    m ) ⇒ ( a m ) = ( b m ) a\equiv b(\mod m)\Rightarrow (\frac{a}{m})=(\frac{b}{m}) ab(modm)(ma)=(mb)

定理4.6 设m为正奇数,则
(1) ( 1 m ) = 1 (\frac{1}{m})=1 (m1)=1
(2) ( a b m ) = ( a m ) ( b m ) (\frac{ab}{ m})=(\frac{a}{m})(\frac{b}{m}) (mab)=(ma)(mb)
(3) ( a n m ) = ( a m ) n (\frac{a^n}{m})=(\frac{a}{m})^n (man)=(ma)n
(4) ( − 1 m ) = ( − 1 ) m − 1 2 (\frac{-1}{m})=(-1)^{\frac{m-1}{2}} (m1)=(1)2m1
(5) ( 2 m ) = ( − 1 ) m 2 − 1 8 (\frac{2}{m})=(-1)^{\frac{m^2-1}{8}} (m2)=(1)8m21

定理4.7 设m,n为正奇数,则 ( n m ) = ( − 1 ) m − 1 2 n − 1 2 ( m n ) (\frac{n}{m})=(-1)^{\frac{m-1}{2}\frac{n-1}{2}}(\frac{m}{n}) (mn)=(1)2m12n1(nm)

定义4.4 二次剩余问题:未知n的分解式的情况下,一般性地判断一个整数a是否是模n的二次剩余是一个难解的问题,称为二次剩余问题。

加密算法1——Rabin加密算法
Alice选择两个4k+3型的素数(称为Blum素数)p,q,计算n=pq,将p,q作为私钥公开n。
加密:明文为整数m,密文c=m2(mod n)
解密:解同余方程c=x2(mod n)可以得到4个解,选择其中有意义的解作为明文m。

计算方法——a=x2(mod p),p=4k+3的解法
若上式有解,则在[0,p-1]中一定有解,因此数字不大时可以对a一直加p直到找到一个完全平方数即可(这种方法对p无4k+3的限制,但是p很大时不方便)
( a p ) = 1 (\frac{a}{p})=1 (pa)=1由欧拉判别法则 a p − 1 2 ≡ 1 ( m o d    p ) a^{\frac{p-1}{2}}\equiv 1(\mod p) a2p11(modp),故有 ( a p − 1 4 ) 2 ≡ a ( m o d    p ) (a^{\frac{p-1}{4}})^2\equiv a(\mod p) (a4p1)2a(modp),故解为 x ≡ ± a p − 1 4 ( m o d    p ) x\equiv ±a^{\frac{p-1}{4}}(\mod p) x±a4p1(modp)

加密算法2——Goldwasser-Micali加密算法
Alice选择两个不同的素数p,q,和整数y满足 ( y p ) = ( y q ) = − 1 (\frac{y}{p})=(\frac{y}{q})=-1 (py)=(qy)=1。计算n=pq,p和q座位私钥公开n,y
加密:将二进制整数m作为明文,第i位记为bi,对于每一位,随机选择0<xi<n,若该位为0计算ci=xi2(mod n),否则计算ci=yxi2(mod n),密文为所有的c
解密:若ci为模n的二次剩余,则判断bi=0,否则bi=1

定义4.5 设<g>是一个由元素g生成的一个n元循环群,则对于任意a∈<g>,存在0≤i<n,a=gi,称i为以g为底a的指标,记作indga。求指标的问题,在密码学中通常称为离散对数问题。n充分大的整数时求解离散对数问题为一个难解问题。

定理4.8 设<g>是一个n元循环群,a∈<g>,如果对于正整数m有:
(1) am=e
(2) 对于任意素因子p|m, a m p ≠ e a^{\frac{m}{p}}\ne e apm=e,则ord(a)=m,且m|n

定义4.8 原根:设m为正整数,整数a满足(a,m)=1,a模m的阶ordm(a)是指a(mod m)在 Z m ∗ \mathbb Z_m^* Zm中的阶;如果 Z m ∗ \mathbb Z_m^* Zm为循环群,整数a称为模m的原根是指a(mod m)为 Z m ∗ \mathbb Z_m^* Zm的生成元

根据上述定义,a所在模m剩余类中所有整数的模m阶均为ordm(a)

根据原根定义:当m=2,4时,模m原根分别为1,3
一般地,当且仅当m=2,4,pa,2pa(p为奇素数,a≥1),模m有原根

定理4.9 设<g>是一个n元循环群,a,b∈<g>,则indgab ≡ \equiv indga+indgb(mod n)
证明:indga=x,indgb=y,则gx+y=ab= g i n d g a b g^{ind_gab} gindgab
g x + y − i n d g a b = e g^{x+y-ind_gab}=e gx+yindgab=e,又ord(g)=n,故n|x+y-indgab,故结论成立

定义4.9 设m是大于1的正整数,如果n次同余式xn=a(mod m), (a,m)=1有解,则a称作模m的n次剩余,否则为模m的n次非剩余。

定理4.14 (高次剩余)设m为大于1的正整数,g为模m的一个原根,(a,m)=1,d=(n, φ \varphi φ(m)),那么xn=a(mod m)有解的充要条件为 a φ ( m ) d ≡ 1 ( m o d    m ) a^{\frac{\varphi(m)}{d}}\equiv 1(\mod m) adφ(m)1(modm)
证明:g为模m的一个原根,所以 Z m ∗ = < g > , x n ≡ a ( m o d    m ) \mathbb Z_m^*=<g>,x^n\equiv a(\mod m) Zm=<g>,xna(modm)有解的充要条件是 i n d g x n = i n d g a ⇒ n i n d g x ≡ i n d g a ( m o d    φ ( m ) ) ind_gx^n=ind_ga\Rightarrow nind_gx\equiv ind_ga(\mod \varphi(m)) indgxn=indganindgxindga(modφ(m))(注意模m的循环群一共只有 φ ( m ) \varphi(m) φ(m)个元素,因此要模 φ ( m ) \varphi(m) φ(m)!),令X=indgx,则有 n X ≡ i n d g a ( m o d    φ ( m ) ) nX\equiv ind_ga(\mod \varphi(m)) nXindga(modφ(m))
该一次同余式有解的充要条件为(n,φ(m))|indga,即d|indga,等价于indga ≡ \equiv 0(mod d)
由定理2.4(4)有 φ ( m ) d i n d g a ≡ 0 ( m o d    φ ( m ) ) \frac{\varphi(m)}{d}ind_ga\equiv 0(\mod \varphi(m)) dφ(m)indga0(modφ(m))。两边取“指数”得 a φ ( m ) d ≡ 1 ( m o d    m ) a^{\frac{\varphi(m)}{d}}\equiv 1(\mod m) adφ(m)1(modm),故原命题成立。

:该定理还能帮助求解高次同余式的解数。对于同余式 a x ≡ b ( m o d    m ) ax\equiv b(\mod m) axb(modm),其有解的充要条件为 ( a , m ) ∣ b (a,m)|b (a,m)b,且通解可以写成 x = x 0 + m ( a , m ) t , t = 0 , 1 , . . . , ( a , m ) − 1 x=x_0+\frac{m}{(a,m)}t,t=0,1,...,(a,m)-1 x=x0+(a,m)mt,t=0,1,...,(a,m)1的形式,因此解的数量为 ( a , m ) (a,m) (a,m)。那么 n X ≡ i n d g a ( m o d    φ ( m ) ) nX\equiv ind_ga(\mod \varphi(m)) nXindga(modφ(m))的解数应该有 ( n , φ ( m ) ) (n,\varphi(m)) (n,φ(m))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值