目录
一、B+树的结构特点
1.非叶子节点仅具有索引功能,也就是说非叶子节点只能存储key值,不能存储value值
2.B+树的所有叶子节点后构成一个有序的链表,这样就可以根据key值遍历数据
二、B+树存储数据
①在空树当中插入6
②插入9、12、15
③插入18
④插入20
⑤继续插入23
三、B树和B+树的对比
3.1、B+树的优点
1.由于B+树在非叶子结点上不包含真正的数据,只当做索引使用,因此在内存相同的情况下,能够存放更多的key;
2.B+树的叶子结点都是相连的,因此对整棵树的遍历只需要一次线性遍历叶子结点即可。而且由于数据顺序排列并且相连,所以便于区间查找和搜索。而B树则需要进行每一层的递归遍历。
3、B+树与B树相比最明显的其实就是寻址向内存传输这个过程,磁盘向内存中推送数据,每次只能推送一页(4KB)的数据,B树中每一个节点都带有value值,可能一页只能存储一个节点,甚至如果value值过大,可能需要多页,然而,B+树中只有非叶子结点存储value值,上面的节点只存储索引,占用内存就小的多了,可能一次就可以传输完成。
3.2、B+树在数据库中的应用
在数据库的操作中,查询操作可以说是最频繁的一种操作,因此在设计数据库时,必须要考虑到查询的效率问题。在很多数据库中,都是用到了B+树来提高查询的效率。在操作数据库时,我们为了提高查询效率,可以基于某张表的某个字段建立索引,就可以提高查询效率,那其实这个索引就是B+树这种数据结构实现的。
1、未建立主键索引查询
执行 select * from user where id=18 ,需要从第一条数据开始,一直查询到第6条,发现id=18,此时才能查询出目标结果,共需要比较6次。
2、建立主键索引查询
3、区间查询
执行 select * from user where id>=10 and id
所以我们只需要找到id为12的叶子结点,按照遍历链表的方式顺序往后查即可,效率非常高。