Chranos是个数学天才。
一天,有一个可爱的小女孩追求Chranos,他知道Chranos最喜欢当且仅当总质量为K克的时候的番茄炒蛋了。她希望通过美食俘获Chranos的胃,这样就一定可以和他在一起了吧!虽然小女孩有无限数量的食材,但是数学王国的番茄和蛋非常特殊,他们的质量分别为N克和M克。为了表现一颗完整的心、表达充足的爱意,所有的食材必须被用完。N和M都是正整数且互素,制作过程中既不会凭空增加质量,也不会凭空消失质量。
Chranos不希望小女孩打扰他学数学。他发现,并不是所有番茄炒蛋都是可以被制作出来的。他想找出最大的不可以被制作出的总质量
K来拒绝小女孩,这样Chranos就可以永远和数学在一起了!
解题思路:女孩的食材是无限的,但是做菜材料的重量是一定的所以这题问题本质就是解
AM+BN=C这个方程的最大无整数解,这里用到了塞瓦维特斯定理:已知a,b为大于1的正整数,gcd(a,b)=1,则使不定方程ax+by=C不存在非负整数解的最大整数C=a×b−a−b
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long int m,n;
cin>>m>>n;
cout<<m*n-(m+n);
return 0;
}