第一题 、二维数组中的查找(NC29)
描述
在一个二维数组array中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
[
[1,2,8,9],
[2,4,9,12],
[4,7,10,13],
[6,8,11,15]
]
给定 target = 7,返回 true。
给定 target = 3,返回 false。
数据范围:矩阵的长宽满足 0≤n,m≤5000≤n,m≤500 , 矩阵中的值满足 0≤val≤1090≤val≤109
进阶:空间复杂度 O(1)O(1) ,时间复杂度 O(n+m)O(n+m)
方法一、
-
从右上角array[0][3]开始查找,如果比target大,则iCol--
-
第二步与array[0][2]开始对比,比target大,继续iCol--
-
第三步与array[0][1]开始对比,比target小,则iRow++
-
第四步与array[1][1]开始对比,比target小,则iRow++
-
第五步与array[2][1]开始对比,等于target,返回true
第二题 、数组中重复的数字(NC283)
描述
在一个长度为n的数组里的所有数字都在0到n-1的范围内。 数组中某些数字是重复的,但不知道有几个数字是重复的。也不知道每个数字重复几次。请找出数组中任意一个重复的数字。 例如,如果输入长度为7的数组[2,3,1,0,2,5,3],那么对应的输出是2或者3。存在不合法的输入的话输出-1
数据范围:0≤n≤10000 0≤n≤10000
进阶:时间复杂度O(n) O(n) ,空间复杂度O(n) O(n)
方法一、循环遍历数组中的每一个元素将他与之后的元素进行比较,若相等则返回改元素的值,不相等则返回-1。该方法的缺点:时间复杂度较高。
方法二、题目的关键点:在一个长度为n的数组里的所有数字都在0到n-1的范围内,则可以定义一个长度和这个数组长度相同的数组,新数组对应的下标对应这个数组的值,用于记录每个数组元素出现的次数。该方法时间复杂度低但空间复杂度要比方法一高,是用空间换取时间的方式。