数据分析
文章平均质量分 89
韩买买
这个作者很懒,什么都没留下…
展开
-
Python数据分析之特征处理笔记五——特征预处理(特征降维及特征衍生)
书接上文,本次将介绍两种常用的特征降维的方法:主成分分析(Principal Component Analysis,PCA),线性判别分析(Linear Discriminant Analysis,LDA)。原创 2022-10-05 21:10:27 · 798 阅读 · 0 评论 -
Python数据分析之特征处理笔记四——特征预处理(特征变换)
特征变换核心思想:将一组特征转换成可用数字表示、形式统一并且包含较可能多原始信息的新特征。一般包括对指化、离散化、归一化、数值化、正规化(规范化)等方法。原创 2022-10-04 20:25:03 · 2698 阅读 · 0 评论 -
Python数据分析之特征处理笔记三——特征预处理(特征选择)
书接上文,进行数据清洗过程后,我们得到了没有空值、异常值、错误值的数据,但想要用海量的数据来建立我们所需要的算法模型,仅仅是数据清洗的过程是不够的,因为有的数据类型是数值,有的是字符,怎样将不同类型的数据联系起来?以及在保证最大化信息量的前提下,怎样得到便于分析的数据?这就是特征预处理要做的工作。原创 2022-10-03 16:19:24 · 5531 阅读 · 1 评论