浅谈BSGS&EXBSGS

BSGS&EXBSGS


BSGS是拿来求什么的?

前面我们应该知道了 a x ≡ b ( m o d   p ) ax≡b(mod\ p) axb(mod p)怎么求,那 a x ≡ b ( m o d   p ) a^x≡b(mod\ p) axb(mod p)怎么求最小的满足条件的x的解呢?

BSGS就是拿来干这样的活的(前提是 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1


BSGS的求解过程( 时间复杂度 p \sqrt p p )

对于 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1,由欧拉定理可得 a φ ( p ) ≡ 1 ( m o d   p ) a^{φ(p)}≡1(mod\ p) aφ(p)1(mod p)

所以 a t ≡ a t + φ ( p ) ( m o d   p ) a^t≡a^{t+φ(p)}(mod\ p) atat+φ(p)(mod p),即 a t ≡ a t   m o d   φ ( p ) ( m o d   p ) a^t≡a^{t\ mod\ φ(p) }(mod\ p) atat mod φ(p)(mod p)

所以t的取值范围为 [ 0 , φ ( p ) − 1 ] [0,φ(p)-1] [0,φ(p)1],为了避免欧拉函数的计算,可以将取值范围扩大到 [ 0 , p ] [0,p] [0,p],在区间内枚举答案时,可以将区间分成若干段且每一段长度为k ( k = ⌊ p ⌋ + 1 ) (k=⌊\sqrt p⌋+1) (k=p +1),所以对于答案t可以表示为 t = k x − y t=kx-y t=kxy,因为t为非负数,所以x的取值范围为 [ 1 , k ] [1,k] [1,k],y的取值范围为 [ 0 , k − 1 ] [0,k-1] [0,k1]

t = k x − y t=kx-y t=kxy代入可得:

a k x − y ≡ b ( m o d   p ) a^{kx-y}≡b(mod\ p) akxyb(mod p),即 a k x ≡ b a y ( m o d   p ) a^{kx}≡ba^y(mod\ p) akxbay(mod p)

所以在计算时只需要枚举x,y使得满足上面等式即可。在枚举时可以先将右边的取值和对应的y值存入哈希表中,然后再来枚举左边。在存y值时应该存入最大的y值,这样才能保证求得的t是最小的。最后还要记得特判一下t=0时的情况


模板
#include<bits/stdc++.h>
using namespace std;
#define ll long long
unordered_map<ll,ll>mm;
ll bsgs(ll a,ll b,ll p)
{
   if(1%p==b%p)return 0;//特判0
   ll k=sqrt(p)+1;
   for(ll i=0,j=b%p;i<k;i++)
   {
       mm[j]=i;
       j=j*a%p;
   }
   ll ak=1;
   for(int i=1;i<=k;i++)ak=ak*a%p;
   for(ll i=1,j=ak;i<=k;i++)
   {
       if(mm.count(j) && i*k>=mm[j])return i*k-mm[j];
       j=j*ak%p;
   }
   return -1;//无解

}
int main()
{
   ll a,b,p;
   while(~scanf("%lld%lld%lld",&a,&p,&b))
   {
       if(a==0&&b==0&&p==0)break;
       mm.clear();
       ll ans=bsgs(a,b,p);
       if(ans==-1)printf("No Solution\n");
       else printf("%lld\n",ans);
   }
   system("pause");
   return 0;
}


上面是 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1的情况,那如果 g c d ( a , p ) > 1 gcd(a,p)>1 gcd(a,p)>1呢,那又怎么求解呢?

这时候就得扩展BSGS来救场了。

exBSGS的求解过程

首先还是先特判t=0是否为答案。

1.如果 g c d ( a , p ) = 1 gcd(a,p)=1 gcd(a,p)=1则调用朴素版BSGS

2.如果 g c d ( a , p ) > 1 gcd(a,p)>1 gcd(a,p)>1,则方程可化为 a t + k p = b a^t+kp=b at+kp=b,令 d = g c d ( a , p ) d=gcd(a,p) d=gcd(a,p)

所以 a d a t − 1 + p d k = b d \cfrac{a}{d}a^{t-1}+\cfrac{p}{d}k= \cfrac{b}{d} daat1+dpk=db,当b%d!=0时方程肯定是无解的。

上述方程又等价于同余方程 a d a t − 1 ≡ b d ( m o d   p d ) \cfrac{a}{d}a^{t-1}≡ \cfrac{b}{d}(mod\ \cfrac{p}{d}) daat1db(mod dp),左右两边乘上 a d \cfrac{a}{d} da 的逆元可得 a t − 1 ≡ b d ∗ ( a d ) − 1 ( m o d   p d ) a^{t-1}≡ \cfrac{b}{d}*( \cfrac{a}{d})^{-1}(mod\ \cfrac{p}{d}) at1db(da)1(mod dp)

这样不断的递归就可以套用BSGS来求解了,在递归的时候因为每一次t-1,所以求解时每一次递归都要+1。


模板
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll inf=0x3f3f3f3f;
unordered_map<ll,ll>mm;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    ll d=exgcd(b,a%b,x,y);
    ll t=x;
    x=y;
    y=t-(a/b)*y;
    return d;
}
ll bsgs(ll a,ll b,ll p)
{
    if(1%p==b%p)return 0;//特判0
    ll k=sqrt(p)+1;
    for(ll i=0,j=b%p;i<k;i++)
    {
        mm[j]=i;
        j=j*a%p;
    }
    ll ak=1;
    for(int i=1;i<=k;i++)ak=ak*a%p;
    for(ll i=1,j=ak;i<=k;i++)
    {
        if(mm.count(j) && i*k>=mm[j])return i*k-mm[j];
        j=j*ak%p;
    }
    return -inf;//无解

}
ll exbsgs(ll a,ll b,ll p)
{
    b=(b%p+p)%p;//放置b为负数
    if(1%p==b%p)return 0;
    ll x,y;
    ll d=exgcd(a,p,x,y);
    if(d>1)
    {
        if(b%d!=0)return -inf;
        exgcd(a/d,p/d,x,y);
        return exbsgs(a,b/d*x%(p/d),p/d)+1;
    }
    else return bsgs(a,b,p);
}
int main()
{
    ll a,b,p;
    while(~scanf("%lld%lld%lld",&a,&p,&b))
    {
        if(a==0&&b==0&&p==0)break;
        mm.clear();
        ll ans=exbsgs(a,b,p);
        if(ans<0)printf("No Solution\n");
        else printf("%lld\n",ans);
    }
    system("pause");
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值