DFS:即深度搜索,没有一个固定的模板,了解思想很重要,通俗的讲,它是一条路走到头,走不动了以后再回溯,再继续搜,深搜可以剪枝来简化问题
例题:排列数字
给定一个整数 n,将数字 1∼n排成一排,将会有很多种排列方法。
现在,请你按照字典序将所有的排列方法输出。
输入格式
共一行,包含一个整数 n。
输出格式
按字典序输出所有排列方案,每个方案占一行。
数据范围
1≤n≤7
输入样例:
3
输出样例:
1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=10;
int path[N];//存每一条路径
bool st[N];//看点是否被用过
int n;
void dfs(int u)//计算u---n所经过的所有路径path;
{
if(u==n)//先确定边界条件 ,把所有位置都填满了,看什么时候结束
{
for(int i=0; i<n; i++)
//printf("%d",path[i]);
cout<<path[i]<<" ";
cout<<endl;
return;
}
for(int i=1; i<=n; i++)//没有被填完
{
if(!st[i])//找一个没有用过的数
{
path[u]=i;
st[i]=true;//记录i已经被用过了
dfs(u+1);
path[u]=0;//可有可无,path[]一直在被覆盖
//如果不进行现场的恢复,则在第一次完成深搜后,所有元素都已经被访问过了。
st[i]=false;//回溯,恢复
}
}
}
int main()
{
cin>>n;
dfs(0);//从第0个位置开始看
return 0;
}
例题:n皇后问题
n−皇后问题是指将 n 个皇后放在 n×n的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。
现在给定整数 n,请你输出所有的满足条件的棋子摆法。
输入格式
共一行,包含整数 n。
输出格式
每个解决方案占 n 行,每行输出一个长度为 n 的字符串,用来表示完整的棋盘状态。
其中 .
表示某一个位置的方格状态为空,Q
表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
注意:行末不能有多余空格。
输出方案的顺序任意,只要不重复且没有遗漏即可。
数据范围
1≤n≤9
输入样例:
4
输出样例:
.Q..
...Q
Q...
..Q.
..Q.
Q...
...Q
.Q..
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=20;
bool col[N],dg[N],udg[N];
char g[N][N];
int n;
void dfs(int u)
{
if(u==n) //确定边界条件,当走到边界时,输出此时的结果
{
for(int i=0; i<n; i++)
cout<<g[i]<<endl;
return ;
}
for(int i=0; i<n; i++) //遍历搜索
if(!col[i]&&!dg[u+i]&&udg[n-u+i])
{
g[u][i]='Q';
col[i]=dg[u+i]=udg[n-u+i]=true;
dfs(u+1);
col[i]=dg[u+i]=udg[n-u+i]=false;
g[u][i]='.';
}
}
int main()
{
cin>>n;
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
g[i][j]='.';
dfs(0);
return 0;
}