CIFAR10
CIFAR-10 数据集由 10 个类的 60000 张 32x32 彩色图像组成,每个类有 6000 张图像。有 50000 张训练图像和 10000 张测试图像。
数据集分为 5 个训练批次和 1 个测试批次,每个批次有 10000 张图像。测试批次包含每个类中随机选择的 1000 张图像。训练批次包含按随机顺序排列的剩余图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次包含来自每个类的 5000 张图像。
import torchvision
train_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)
print(test_set[0])
(<PIL.Image.Image image mode=RGB size=32x32 at 0x1F5B55DD5E0>, 3)
test_set[]存放两个数据,一个是图像本身,一个是标签
图片显示
import torchvision
from torch.utils.tensorboard import SummaryWriter
dataset_transform=torchv