自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 c语言数据结构——中序线索化二叉树,实现中序遍历(不借助栈)

本文作为我学习数据结构的笔记,若有不足请见谅或麻烦提出宝贵意见。当二叉树用左右指针表示时,对于n个结点的二叉树,将存在n+1个空指针的空间浪费。同时周游是二叉树中许多操作的基础,因此生成一种利用空指针的思想,利用结点的空左指针存储该结点在某种周游序列中的前驱结点的位置;利用结点的空右指针存储该结点在同种周游序列中的后继结点的位置。这种附加的指向前驱结点和后继结点的指针称作线索,加进了线索的二叉树左右指针表示称作线索二叉树。把二叉树左右指针表示改造成线索二叉树的过程称为线索化。本文主要描述中序线索化。

2022-06-01 21:55:16 2546 1

原创 c语言数据结构——二叉树的先序、中序、后序遍历(借助栈)

前言本文作为我学习数据结构的笔记,若有不足请见谅或麻烦提出宝贵意见。1.什么是二叉树的周游将二叉树的所有结点访问一遍,且每个结点只被访问一次,按照被访问的次序,得到结点的一组线性序列。周游种类可分为:深度优先遍历、广度优先遍历。其中,深度优先遍历按照根被访问的时间,可分为:DLR先根遍历:根左右LDR中根遍历:左根右LRD后根遍历:左右根2.遍历算法非递归的遍历算法主要依靠栈来实现。2.1 先根遍历2.1.1 算法思想:1)从根p开始,访问p并让p进栈;置p为左子树,重复直到p为

2022-05-30 18:46:41 2927

原创 python数据与挖掘实战学习:实战篇 第十章家用电器用户行为分析与事件识别 笔记

第十章 家用电器用户行为分析与事件识别10.1 背景与挖掘目标在热水器用户行为分析过程中,用水事件识别是最关键的环节。由于用户不仅仅使用热水器来洗浴,还可能包括洗手、洗脸、刷牙、洗菜、做饭等用水行为,所以热水器采集到的数据来自各种不同的用水事件。本案例基于热水器采集的时间序列数据,将顺序排列的离散的用水时间节点根据水流量和停顿时间间隔划分为不同大小的时间区间,每个区间是一个可理解的一次完整用水事件,并以热水器一次完整用水事件为一个基本事件,将时间序列数据划分为独立的用水事件并识别出其中属于洗浴的事件。

2022-04-18 10:43:14 3764 3

原创 python数据与挖掘实战学习:实战篇 第九章基于水色图像的水质评价笔记

基于水色图像的水质评价

2022-04-16 10:56:08 5258

原创 python数据与挖掘实战学习:实战篇 第八章中医证型关联规则挖掘笔记

数据分析与挖掘实战 中医证型关联规则挖掘

2022-04-14 10:16:47 6059 9

原创 python数据与挖掘实战学习:实战篇 第七章航空公司客户价值分析笔记

python数据分析与数据挖掘 航空公司客户价值分析

2022-04-12 14:45:45 4460

原创 python数据与挖掘实战学习:实战篇 第六章电力窃漏电自动识别笔记

第六章 电力窃漏电自动识别6.1 背景与挖掘目标传统的防窃漏电方法对人的依赖性太强,且采用这种方法建模时,模型各输入指标权重的确定需要用专家的知识和经验来判断,具有很大主观性。现有的电力计量自动化系统能够采集到各相电流、电压、功率因数等用电负荷数据以及用电异常等终端报警信息。异常告警信息和用电负荷数据能够反映用户的用电情况,同时稽查工作人员也会通过在线稽查系统和现场稽查来找出窃漏电用户,并录入系统。若能通过这些数据信息提取出窃漏电用户的关键特征,构建窃漏电用户的识别模型,就能自动检查、判断用户是否存在

2022-04-11 10:03:44 2755 2

原创 python数据与挖掘实战学习:第五章挖掘建模 时序模式部分笔记

python数据分析与挖掘实战第五章时序部分笔记

2022-04-07 11:18:12 2224 1

原创 python数据与挖掘实战学习:第五章挖掘建模 关联规则部分笔记

关联规则及Apriori算法

2022-04-06 13:43:54 360 1

原创 python数据与挖掘实战学习:第五章挖掘建模 聚类分析部分笔记

聚类分析部分

2022-04-05 12:51:50 1541

原创 python数据与挖掘实战学习:第五章挖掘建模 分类与预测部分笔记

第五章 挖掘建模5.1 分类与预测分类与预测是预测问题的两种主要类型,分类主要是预测分类标号(离散属性),而预测主要是建立连续值函数模型,预测给定自变量对应的因变量的值。5.1.1 实现过程(1)分类分类是构造一个分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到预先定义好的类别。分类模型建立在已有类标记的数据集上,模型在已有样本上的准确率可以方便地计算,属于监督学习。(2)预测预测是指建立在两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制。(3)实现过程分类算法:第一

2022-04-05 09:53:09 1493

原创 python数据与挖掘实战学习:第四章数据预处理 笔记

前言对原始数据中的异常值和缺失值进行数据清洗,完成后接着进行或同时进行数据集成、转换、规约等一系列的处理,该过程就是数据预处理。目的是提高数据的质量,并且要让数据更好地适应特定的挖掘技术或工具数据预处理的主要内容包括数据清洗、数据集成、数据变换和数据规约。第四章 数据预处理4.1 数据清洗数据清洗主要是删除原始数据集中的无关数据、重复数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,处理缺失值、异常值等。4.1.1 缺失值处理常用方法:删除记录、数据插补和不处理。插补方法方法描述.

2022-04-02 08:52:31 1638 1

原创 python数据与挖掘实战学习:第三章数据探索 笔记

前言通过检验数据集的数据质量、绘制图表、计算某些特征量等手段,对样本数据集的的结构和规律进行分析的过程就是数据分析。本章从数据质量 分析和数据特征分析两个角度对数据进行探索。第三章 数据探索3.1 数据质量分析数据质量分析是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础,主要任务是检查原始数据中是否存在脏数据。脏数据一般是指不符合要求,以及不能直接进行相应分析的数据:缺失值异常值不一致的值重复数据及含有特殊符号(如#、¥、*)的数据3.1.1 缺失值分析数据的缺失.

2022-03-29 14:09:47 2023

原创 python数据与挖掘实战学习:第二章Python数据分析简介 笔记

第二章 Python数据分析简介2.1 python数据分析工具扩展库简介Numpy提供数组支持,以及相应的高效的处理函数Scipy提供矩阵支持,以及矩阵相关的数值计算模块Matplotlib强大的数据可视化工具、作图等Pandas强大、灵活的数据分析和探索工具StatsModels统计建模和计量经济学,包括描述统计、统计模型估计和推断Scikit-Learn支持回归、分类、聚类等强大的机器学习库Keras深度学习库,用于建立神经网络

2022-03-28 16:21:48 2329

原创 python数据与挖掘实战学习:第一章数据挖掘基础 笔记

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar

2022-03-28 16:20:03 1495

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除