筛选(线性+埃氏)

(假设)题目:
给出一个正整数n,打印出所有从1~n的素数(即质数),关键是要找出一个判断一个正整数n是否为素数的方法

  如果我们没有学习算法  那么我们就是用最朴素的算法
  废话不多说  上代码:

对于每一个正整数我们都做如下操作:

#include<stdio.h> //运行时间的话  O(n)
int main()
{
  int i,n;
  while(~scanf("%d",&n))
  { for(i=2;i<n;i++)
         if(n%i==0)    break;
    if(i==n)    printf("YES\n");
    else           printf("NO\n");
  }
}

那么针对上一个代码进行优化
我们可以发现 循环 i<n 这里可以优化一下,打个比方 8%2=0 就发现8不是素数,所以没必要做到8%4=0去,只要i<=sqrt(n) 即可判断完;

#include<stdio.h>   //对于每个正整数的时间复杂度为O(log n)
#include<math.h>
int main()
{ int i,n,x;
  while(~scanf("%d",&n))
  { x=(int)sqrt(n);//因为sqrt返回的值为double;
    for(i=2;i<=x;i++)
         if(n%i==0)    break;
    if(i>x)    printf("YES\n");
    else           printf("NO\n");
  }

说完以上俩种 其实可以发现 效率并不是很高 如果处理较大的数据时 就会很头疼。因为 都有时间限制

埃拉托斯特尼筛法(不清楚的可以点链接 看一下bd怎么说)

基本思想:素数的倍数一定不是素数
实现方法:用一个长度为N+1的数组保存信息(0表示素数,1表示非素数),先假设所有的数都是素数(初始化为0),从第一个素数2开始,把2的倍数都标记为非素数(置为1),一直到大于N;然后进行下一趟,找到2后面的下一个素数3,进行同样的处理,直到最后,数组中依然为0的数即为素数。
这样 时间复杂度 O(nloglogn)就降下来很多很多了

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;
int a[maxn];//标记 
int A[100000];//保存素数 
int main()
{  int n,x=0;
  scanf("%d",&n);
  memset(a,0,sizeof(a));c++函数   目的是把数组初值都复赋为0;
  for(int i=2;i<=n;i++)
  {
  	if(a[i]==0) //未被标记
	  {
	  	A[x++]=i;
	   } 
	   for(int j=i+i;j<=n;j+=i)
	       a[j]=1;//把i的倍数都筛掉; 
  }
   printf("1-%d的素数有:\n",n);
  for(int i=0;i<x;i++) //打印表
   printf("%d ",A[i]) ;
}

例如:
在这里插入图片描述
以上就是埃氏筛选法,但是自习想一想在处理比较大的数据事 是不是会重复很多次,
打个比分
n=6时
i=2的时候 可以筛选一次
当i=3的时候 又会筛选一次 这是一个较小的数据,如果n很大的时候 是不是会多做很多次无用的筛选,

所以 就有了

线性筛选

线性筛,复杂度为O(n)。与埃氏筛相比,不会对已经被标记过的合数再进行重复标记,故效率更高。欧拉筛将合数分解为 (最小质因数 * 一个合数) 的形式,通过最小质因数来判断当前合数是否已经被标记过。

const int maxn = 101;   // 表长
int prime[maxn], pNum = 0;    // prime记录素数,pNum记录素数个数 
bool p[maxn] = {false};        // p记录当前数是否被筛去

void sushu(int n)    // 查找记录2-n的素数
{
	for (int i = 2; i <= n; i++)
	{
		if (p[i] == false)  // 如果未被筛过,则为素数
			prime[pNum++] = i;//记录素数
		for (j = 0; j < pNum; j++)//
		{
			if (i * prime[j] > n)      // 当要标记的合数超出范围时跳出
				break;
			p[i * prime[j]] = true;     // 将已经记录的素数的倍数进行标记
			if (i % prime[j] == 0)      //关键步骤  用最小的因数去筛
				break;
		}
	}
}

if (i % prime[j] == 0)
这个是 关键的一步
可以参考一下别的up主的思路
在这里插入图片描述
对于 i%prime[j] == 0 就break的解释 :当 i是prime[j]的倍数时,i = kprime[j],如果继续运算 j+1,i * prime[j+1] = prime[j] * k prime[j+1],这里prime[j]是最小的素因子,当i = k * prime[j+1]时会重复,所以才跳出循环。
举个例子 :i = 8 ,j = 1,prime[j] = 2,如果不跳出循环,
prime[j+1] = 3,8 * 3 = 2 * 4 * 3 = 2 * 12,在i = 12时会计算。
因为欧拉筛法的原理便是通过最小素因子来消除。

埃氏筛法(Eratosthenes筛法)和线性筛法(Linear Sieve)都是用于求解素数的算法。它们的主要区别在于筛选过程中的操作不同。 1. 埃氏筛法:埃氏筛法是一种古老的求解素数的算法,由古希腊数学家埃拉托斯特尼(Eratosthenes)提出。它的基本思想是从2开始,将所有2的倍数标记为非素数,然后找到下一个未被标记的数(即3),将所有3的倍数标记为非素数,依此类推。最后留下的未被标记的数就是素数。 C++实现埃氏筛法的代码如下: ```cpp #include <iostream> #include <vector> using namespace std; const int N = 1000000;vector<int> is_prime(N, true); void sieve_of_eratosthenes() { is_prime = is_prime = false; for (int i = 2; i * i < N; ++i) { if (is_prime[i]) { for (int j = i * i; j < N; j += i) { is_prime[j] = false; } } } } int main() { sieve_of_eratosthenes(); for (int i = 2; i < N; ++i) { if (is_prime[i]) { cout << i << " "; } } return 0; } ``` 2. 线性筛法:线性筛法是一种改进的埃氏筛法,它将筛选过程从平方根优化到线性时间。线性筛法的基本思想是对于每个素数p,筛选出所有小于等于p^2的合数。这样可以减少筛选的次数,提高效率。 C++实现线性筛法的代码如下: ```cpp #include <iostream> #include <vector> using namespace std; const int N = 1000000; vector<int> is_prime(N, true); vector<int> primes; void linear_sieve() { is_prime = is_prime = false; for (int p = 2; p * p < N; ++p) { if (is_prime[p]) { for (int i = p * p; i < N; i += p) { is_prime[i] = false; } } } for (int p = 2; p < N; ++p) { if (is_prime[p]) { primes.push_back(p); } } } int main() { linear_sieve(); for (int i = 0; i < primes.size(); ++i) { cout << primes[i] << " "; } return 0; } ``` 这两种算法都可以有效地求解素数,但线性筛法相对于埃氏筛法在筛选次数上有很大优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值