最短路问题


一、单源最短路

边权都为正

1.朴素版dijkstra

思路:

存储:邻接矩阵;如有重边:取最短边。

  1. 初始化距离数组:dist[1] = 0; dist[i] = 无穷
  2. 循环迭代n次,找到 不在集合s中的 且距离源点最近的点t(跳板)
    • 拿到t<---j
    • 跳板t加入集合s
    • t去更新其它点到源点的距离
  3. 返回结果

【核心代码】

时间复杂度O(n * n)

int g[N][N];
int dist[N];//存储各个点到源点的最短距离
bool st[N];//集合s

int dijkstra()
{
	memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    
    for(int i = 0; i < n; i ++)
    {
    	int t = -1;
    	for(int j = 1; j <= n; j ++)
    	{
    		if(!st[j] && (t == -1 || dist[t] > dist[j]))
    			t = j;
    	}
    	st[t] = true;
    	
    	for(int j = 1; j <= n; j ++) dist[j] = min(dist[j], dist[t] + g[t][j]);
    }
    if(dist[n] == 0x3f3f3f3f) return -1;
    else return dist[n];
}

2.堆优化版dijkstra

朴素版dijkstra算法在寻找不在集合s中的 且 距离源点最近的点t 的时间复杂度为(n * n),既然寻找最小,我们可以使用一个小根堆来优化这一步,其它实现大致相同!

和BFS代码框架十分的相像!

【核心代码】

思路:

存储方式:邻接表

  1. 一号点的距离初始化为零,其他点初始化成无穷大。
  2. 将一号点放入堆中。
  3. 不断循环,直到堆空。每一次循环中执行的操作为:
    弹出堆顶(与朴素版diijkstra找到S外距离最短的点相同,并标记该点的最短路径已经确定(加入集合s))。
    用该点更新邻接节点的距离,若更新成功就加入到堆中(我们肯定要小的)。

【核心代码】

时间复杂度:O(mlongn)

typedef pair<int, int> PII;// first:距离 second:节点编号(内部按first排序)
priority_queue<PII, vector<PII>, greater<PII>> heap; //小根堆的定义方式
int h[N], e[N], w[N], ne[N], idx;
int dist[N];
int st[N];

int dijkstra()
{
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	heap.push({dist[1], 1});
	
	while(heap.size())
	{
		auto t = heap.top();// 拿到跳板t
		heap.pop();
		
		int ver = t.second, distance = t.first;// ver节点编号
		if(st[ver]) continue;
		st[ver] = true;
		
		//用t去更新它的邻接节点
		for(int i = h[ver]; i != -1; i = ne[i])
		{
			int j = e[i];
			if(dist[j] > distance + w[i])
			{
				dist[j] = distance + w[i];
				heap.push({dist[j], j});
			}
		}
	}
	if(dist[n] == 0x3f3f3f3f) return -1;
	else return dist[n];
}


存在负权边

1.Bellman-Ford:有边数限制的最短路

限制k次

松弛操作:

在这里插入图片描述

思路:

int dist[N];// 表示节点i到节点1的距离
int back[N];//数据备份防止串联
//存储方式:结构体存边
struct Edge
{
	int a, b, w;
}edge[M];

//1. 初始化距离

//2. 
for k 次
{
	备份数据,防止串联
	//3.
    for 所有边 a ---> b (w)// 枚举遍历所有条边
    {
		//更新(松弛操作)
		dist[b] = min(dist[b], backup[a] + w);
    }	
}

【核心代码】

时间复杂度:O(n*m)

void bellman_ford()
{
	memset(dist, 0x3f, sizeof dist);//初始化
	dist[1] = 0;
	
	for(int i = 0; i < k; i ++)
	{
		memcpy(back, dist, sizeof dist);//数据备份
		for(int j = 0; j < m; j ++)//枚举所有边
		{
			int a = edge[j].a, b = edge[j].b, w = edge[j].w;
			dist[b] = min(dist[b], dist[a] + w);
		}
	}
}


主函数:if(dist[n] > 0x3f3f3f3f / 2) puts("No");
else cout << dist[n];

限定k条边的原因:可能出现负权环

在这里插入图片描述

为什么要用backip[N]备份数据?

在这里插入图片描述

为什么是dist[n]>0x3f3f3f3f/2, 而不是dist[n]==0x3f3f3f3f
5号节点距离起点的距离是无穷大,利用5号节点更新n号节点距离起点的距离,将得到109−2,109−2, 虽然小于10^9, 但并不存在最短路,(在边数限制在k条的条件下)。

在这里插入图片描述

2.spaf

SPFA 算法是 Bellman-Ford算法 的**队列优化**算法的别称,通常用于求含负权边的单源最短路径,以及判负权环。

Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,我们只用遍历那些到源点距离变小的点所连接的边即可,只有当一个点的前驱结点更新了,该节点才会得到更新;因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。(队列里边存的是所有变小的节点,只有前面的点变小了,那么当更新时它的后继节点才有可能变小!)

时间复杂度:通常O(m),最坏O(n*m)

基于宽搜思想:

  1. queue <– 1
  2. while queue 不为空
    (1) t <– 队头
    queue.pop()
    (2)用 t 更新所有出边 t –> b,权值为w
    queue <– b (若该点被更新过,则拿该点更新其他点)

(特像dijkstra算法,hhhhh)

(1)spfa求最短路

【核心代码】

//存储方式:邻接表

int h[N], w[N], e[N], ne[N], idx;
int dist[N];
bool st[N];//st存的是这个点是否在队列当中,防止队列存储重复的点(存重复没有意义)

int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        int t = q.front();
        q.pop();

        st[t] = false;// 拿出后,不在队列中了
		
		//用t更新所有出边
        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])
                {
                    q.push(j);// 待更新其它点的点入队(表小的点)
                    st[j] = true;
                }
            }
        }
    }

    return dist[n];
}
(2)spfa判断负环

思路:

维护一个计数cnt[]数组,当cnt[x]>=n时,则表明出现负环!

1、dist[x]记录虚拟源点x的最短距离

2、cnt[x]记录当前x点到虚拟源点最短路的边数,初始每个点到虚拟源点的距离为0,只要他能再走n步,即cnt[x] >= n,则表示该图中一定存在负环,由于从虚拟源点到x至少经过n条边时,则说明图中至少有n + 1个点,表示一定有点是重复使用

3、若dist[j] > dist[t] + w[i],则表示从t点走到j点能够让权值变少,因此进行对该点j进行更新,并且对应cnt[j] = cnt[t] + 1,往前走一步

在这里插入图片描述

【注意】

  • 判断是否存在负环,并非判断是否存在从1开始的负环,因此需要将所有的点都加入队列中,更新周围的点。
  • 不需要初始化dist数组,如果存在负环,不管初值为多少,都会被更新!

【核心代码】

//存储方式:邻接表
int h[N], w[N], e[N], ne[N], idx;
int dist[N];//存放点到源点的最短距离
int cnt[N];//cnt[x] 表示 当前从1~x的最短路的边数
bool st[N];
bool spfa()
{

    // 这里不需要初始化dist数组为 正无穷/初始化的原因是, 如果存在负环, 那么dist不管初始化为多少, 都会被更新
    queue<int> q;
    
    //不仅仅是1了, 因为点1可能到不了有负环的点, 因此把所有点都加入队列
    for(int i = 1; i <= n; i ++)
    {
        q.push(i);
        st[i] = true;
    }
    
    while(q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;//取出队列后 标记为已用过
        
        //用t去去更新所有出边(后继)
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;//维护cnt数组
                if(cnt[j] >= n) return true;
                
                if(!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
            
        }
    }
    return false;
}

二、多源最短路

Floyd

思想:动态规划

时间复杂度:O(n ^ 3)

【核心代码】

void floyd()
{
    for(int k = 1; k <= n; k ++)
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= n; j ++)
                dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
}

三、总结

本文是对acwing基础课搜索与图论章节最短路问题的复盘,旨在进一步加深对算法的理解,并能快速码出代码,希望对你也有些许帮助呀!


注:如果文章有任何错误或不足,请各位大佬尽情指出,评论留言留下您宝贵的建议!如果这篇文章对你有些许帮助,希望可爱亲切的您点个赞推荐一手,非常感谢啦


欢迎访问:本人博客园地址

  • 11
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 13
    评论
以下是使用Matlab解决最短路问题的示例代码: ```matlab % 首先定义图的邻接矩阵 % 例如下面的邻接矩阵表示一个6个节点的有向图 % 从1到2的边权重为2,从1到3的边权重为4,以此类推 % 如果两个节点之间没有边相连,则边权重为inf G = [0 2 4 inf inf inf; inf 0 1 5 inf inf; inf inf 0 1 inf inf; inf inf inf 0 3 inf; inf inf inf inf 0 2; inf inf inf inf inf 0]; % 使用Dijkstra算法计算从节点1到其他节点的最短路径和距离 [start_node, dist] = dijkstra(G, 1); % 打印结果 fprintf('从节点1到其他节点的最短路径和距离如下:\n'); for i = 1:length(dist) fprintf('从节点1到节点%d的最短路径为:', i); print_path(start_node, i); fprintf(',距离为:%d\n', dist(i)); end % Dijkstra算法实现 function [start_node, dist] = dijkstra(G, s) n = size(G, 1); start_node = zeros(1, n); dist = inf(1, n); visited = false(1, n); dist(s) = 0; for i = 1:n-1 u = find_min_dist(dist, visited); visited(u) = true; for v = 1:n if ~visited(v) && G(u,v) ~= inf && dist(u) + G(u,v) < dist(v) dist(v) = dist(u) + G(u,v); start_node(v) = u; end end end end % 辅助函数:找到距离源节点最近的未访问节点 function u = find_min_dist(dist, visited) dist(visited) = inf; [~, u] = min(dist); end % 辅助函数:打印路径 function print_path(start_node, v) if start_node(v) == 0 fprintf('%d', v); else print_path(start_node, start_node(v)); fprintf(' -> %d', v); end end ``` 希望这个示例代码能够帮助您解决最短路问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值