问题描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入格式
第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式
包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
样例输入
70 3
71 100
69 1
1 2
样例输出
3
数据规模和约定
对于30%的数据,M <= 10;
对于全部的数据,M <= 100。
标准的01背包算法问题
01背包具体想法如下
假设我们有三个物品,他们的价格和价值分别如下
a1的价格为1,价值为1
a2的价格为2,价值为2
a3的价格为3,价值为3
第二列开始每列的数字表示能用的钱
第二行开始每行第一列的数字代表这一次买第几个物品. 注意!不是只买第二个物品
每行每列的交点表示的值,就是在我们所持有的钱下,所购买物品能有的最大价值,这个值的算法思路如下
第二列只买第一个物品,当前我们所有钱为0的时候买不了这个物品,所以价值就为0。
当我们有1块钱时,就能买a1这个物品,这个时候我们得到的价值为1;虽然后来我们的钱继续变多,但是我们当前只买a1,所以我们只有1的价值;
到a2这个物品时,我们有1块钱的时候买不了第二个物品,但是我们能买第一个物品,所以我们可以有1的价值,当我们有两块钱时我们有两个选择,一个是买a2这个物品,一个是继续买a1这个物品。
经过比较我们可以知道我们买a2这个物品比买a1这个物品得到的价值更多,所以我们买a2这个物品。
但是当我们有3块钱的时候我们就可以同时买a1和a2,这个时候我们肯定两个一起买,所以我们的价值就为3;
之后每个物品都这样计算,就可以得到我们所有最大钱的时候可以得到多少价值的物品
0 | 1 | 2 | 3 | 4 | 5 | 6 | |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 0 | 1 | 2 | 3 | 3 | 3 | 3 |
3 | 0 | 1 | 2 | 3 | 3 | 3 | 6 |
具体代码实现思路如下,我的代码是简化过的代码,如果看不懂的可以自己去找01背包实现的完整代码
#include<bits/stdc++.h>
using namespace std;
int T,M;
int aa[100000],bb[100000]; //aa用来记录采摘的时间,bb用来记录草的价值
int dp[100000]; //用来储存每个固定时间我们能获得草药的最大价值
int main()
{
memset(dp,0,sizeof(dp));
cin>>T>>M;
int i,j;
for(i=1;i<=M;i++)
{
cin>>aa[i];
cin>>bb[i];
}
for(i=1;i<=M;i++) //遍历每个草药为
{
for(j=T;j>=aa[i];j--)
{
dp[j]=max(dp[j],dp[j-aa[i]]+bb[i]); //这个代码就是比较如果不采这株草药,和采了这株草药,我们能获得的价值哪个更大
}
}
cout<<dp[T]<<endl;
return 0;
}