2021-05-07

问题描述

  辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
  如果你是辰辰,你能完成这个任务吗?

输入格式

  第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出格式

  包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

样例输入

70 3
71 100
69 1
1 2

样例输出

3

数据规模和约定

  对于30%的数据,M <= 10;
  对于全部的数据,M <= 100。

 

 

 

 

 

 

 

 

 

 

 

标准的01背包算法问题

 

01背包具体想法如下

假设我们有三个物品,他们的价格和价值分别如下

a1的价格为1,价值为1

a2的价格为2,价值为2

a3的价格为3,价值为3

 

第二列开始每列的数字表示能用的钱

第二行开始每行第一列的数字代表这一次买第几个物品.       注意!不是只买第二个物品

每行每列的交点表示的值,就是在我们所持有的钱下,所购买物品能有的最大价值,这个值的算法思路如下

第二列只买第一个物品,当前我们所有钱为0的时候买不了这个物品,所以价值就为0。

当我们有1块钱时,就能买a1这个物品,这个时候我们得到的价值为1;虽然后来我们的钱继续变多,但是我们当前只买a1,所以我们只有1的价值;

到a2这个物品时,我们有1块钱的时候买不了第二个物品,但是我们能买第一个物品,所以我们可以有1的价值,当我们有两块钱时我们有两个选择,一个是买a2这个物品,一个是继续买a1这个物品。

经过比较我们可以知道我们买a2这个物品比买a1这个物品得到的价值更多,所以我们买a2这个物品。

但是当我们有3块钱的时候我们就可以同时买a1和a2,这个时候我们肯定两个一起买,所以我们的价值就为3;

之后每个物品都这样计算,就可以得到我们所有最大钱的时候可以得到多少价值的物品

 

 

 0123456
10111111
20123333
30123336

 

 

 

具体代码实现思路如下,我的代码是简化过的代码,如果看不懂的可以自己去找01背包实现的完整代码

 

#include<bits/stdc++.h>
using namespace std;
int T,M;
int aa[100000],bb[100000];         //aa用来记录采摘的时间,bb用来记录草的价值
int dp[100000];                    //用来储存每个固定时间我们能获得草药的最大价值
int main()
{
	memset(dp,0,sizeof(dp));
	cin>>T>>M;
	int i,j;
	for(i=1;i<=M;i++)
	{
		cin>>aa[i];
		cin>>bb[i];
	}
	for(i=1;i<=M;i++)                         //遍历每个草药为
	{
		for(j=T;j>=aa[i];j--)                     
		{
			dp[j]=max(dp[j],dp[j-aa[i]]+bb[i]);       //这个代码就是比较如果不采这株草药,和采了这株草药,我们能获得的价值哪个更大
		}
	}
	cout<<dp[T]<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值