离散知识总结

第一章:集合
一:联接词(很简单)
特别说明:(p->q,表示只有q才p,如果p则q,只要p
,就q)
二:范式与对偶
(1):原式等价则其对偶式等价
(2):主析取范式
①:成真小项的析取(0为假,1为真)
②:等价公式
(3):主合取范式
①:成假大项的合取
②:等价公式
三:推理理论
真值表法:前1后1,后0前0
(1):直接证明:P,T;
(2):间接证明:①:CP
②:并上非(结论)为恒假。
四:关系
交,并,补,对称差:对称差就是两个补的交集,A,B的对称差就是属于A不属于B及,属于B不属于A的并集。
X的关系:X自身的笛卡尔集
X到Y的关系:X,Y的笛卡尔集
前域:序偶集合中x的范围
值域:序偶集合中y的范围
五:
自反:
①:矩阵上的主对角线的元素均为1
②:关系图上的每个点都有自回路
③:x∈A,<x,x>∈A
反自反:
①:矩阵对角线上的元素均为0
②:关系图上的每个点均无自回路
③:x∈A,<x,x>不属于A
既不是自反也不是反自反:
①:部分<x,x>∈A;
对称:
①:关系图上关于主对角线对称
②:关系图上必有两条往返路
③:<x,y>∈A,<y,x>属于A
反对称:
①:矩阵中对应的每个点不关于对称
②:关系图中每相邻点仅有一条路
③:<x,y>∈A,且x!=y,<y,x>不属于A
既不是对称也不是反对称:
①:含有对称的部分,但不完全对称
既是对称又是反对称:
①:自反的
传递:
①:矩阵上Aij=1,Ajk=1,则Aik=1
②:关系图上两点之间若有长度大于1的路,则必有长度等于1的路
③<a,b>∈A,<b,c>∈A,则<a,c>属于A
复合关系:
其实就是求传递
逆关系:其实就是每个序关系中的元素反过来
幂运算:
其实也是求传递
R的0次幂就是他的恒等关系
R的1次幂就是他本身
R的n次幂会是一个空集或是一个循环
关系的闭包运算:
自反闭包:就是并上恒等关系即可。
对称闭包:就是并上他的逆关系
传递闭包:并上他的幂运算,从0开始(wars hall算法)
划分和覆盖:
覆盖:就是包含原集合中的所有元素,可以重复
划分:包含原集合的所有元素但不可以重复
最大划分:每个元素划分成一块
最小划分:所有元素是一块
加细与真加细:相对于两个划分而言,若其中的一个划分是对另一个划分的在划分,那末就称为另一个划分的加细,若两个划分不相等,则称为真加细。
交叉划分:
划分的求法:
划分的个数:就是排列组合
等价关系:自反,对称,传递
等价类:等价关系R,集合中所有满足等价关系R的集合,记作[a]R或是[a].
商集:等价类的集合,等价类的个数叫做等价关系R的秩。
例如,I上的mod3同余的商集{[0],[1],[2]}
A的集合上等价关系R决定了A的一个划分,若求R上的等价关系先求他的划分,再求关系。
偏序关系:
①:自反
②:传递
③:反对称
盖住:
Y<=X
且集合中没有z使得y<=z,且z<=x
哈斯图:
链:在集合中每两个元素都是有关系的,称为链,反之称为反链
若A是一个链,则它们的关系称为全序集合,关系称为全序关系(线序关系)
极大元:
进士相比于子集中的任何元素都不能关系他的那个
极小元:
与极大元相反
(两者是不唯一的)
最大元:
相对于子集来说,每个元素都与他有关系,且不一定有,且是唯一的
最小元:
与最大元相反
上界:相对于原来集合中的所有的子集元素中都相关的元素
下界:与上界相反
上确界:
上确界中与所有上界都有关系的那个
下确界:
下确界中都与他有关系的那个
良序::::
代数系统:
广群:可封闭
半群:可封闭,可结合;
性质:①如果一个半群的子集运算封闭的话,那么子集也是子群。
②有限的半群必存在逆元
独异点:有幺云的半群。
群:①:封闭
②:可结合
③:有幺元
④:每个元素都有逆元
判断子群:
①:按照定义
②:定理1:有限子集+封闭
③:定理2:子集(不必为有限的)a∈A,b∈A,则ab的逆∈A,则其为子半群
阿贝尔群:可交换的群
循环群:群+有生成元的群???
陪集:每个元素与子群进行运算,有左陪集,右陪集
拉格朗日定理:主要就是子群的元素个数是原来集合的因子
平凡子群:因字数是1或是n的群
奇数阶的群的子群都是平凡子群
n为质数的时候一定为循环群
对于任意一个元素,a的k次幂一定可以等于幺元,且k一定是n的因子
环:对于两个运算来说<A,+, * >
<A,+> 为阿贝尔群
<A,
>是半群
*对于+是可分配的
交换环:
<A , * > 是可交换
含幺环:<A, * > 是含幺元的
整环:
<A , * >无零因子且为可交换独异点

<A-{零元}, *>为阿贝尔群
有限整环必定是域
图:
任意图中,奇度数节点必定是偶数个
握手定理:任意图中,度数之和等于边数的两倍
点割集:删去一点没事,删去所有不连通(删点也删边)
边割集:同上(删边不删点)
欧拉图:有欧拉回路的图。
判断有欧拉路的充要条件:奇度数节点有0或2;
判断有欧拉回路的充要条件:奇度数节点有0;
汉密尔顿路:
必要条件:(判断不是汉密尔顿路)
去掉任意节点后原图的联通路数小于等于去掉的节点数
充分条件(判断存在汉密尔顿路)
汉密尔顿路:任意两个节点度数之和大于等于(n-1),n为节点数
汉密尔顿回路:大于等于n
欧拉图中的定理
e<=3v-6;
平面图:
边之间无交叉
联通平面图中的欧拉定理:v-e+r=2
必要:e<=3v-6
e为节点,e为边,r为面
面的次数:边界回路的长度
边界:面的各边组成的回路
面的次数之和等于其边数的两倍
着色
最小生成树:克鲁斯卡尔算法
最优二叉树:
前缀码:每一个二叉树对应一个前缀码(判断哪个集合是前缀码,前缀码代表的内容是什么)
根数:有一个节点入度为0,其余节点入度均为1
内点(分支内点):出度不为0的节点(根也为内点)
v的层次:从根到该节点的单向通路长度
完全m叉树
树叶数为t
分支点数为i
则(m-1)i=t-1
E=I + 2n
E为外部通路长度,I为内部通路长度,n为分支点个数
warshall算法
求传递闭包

  • 8
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值