2D关键点检测之CPM:Convolutional Pose Machines

image.png
论文链接:Convolutional Pose Machines
时间:2016.2.12 CVPR2016
作者团队:CMU
分类:计算机视觉–人体关键点检测–2D top-down

目录:

1.CPM背景
2.CPM算法流程
3.CPM结果评估
4.CPM网络架构图
5.引用

1.主要在于学习记录,如有侵权,私聊我修改
2.水平有限,不足之处感谢指出


1.CPM背景
  1. CPM算法是基于热图检测的方法,继承姿态机Pose Mchines(PM)的优势,也可以采用topdown方法检测多人。
  2. PM算法:将人体姿态的各个部分分别建立对应的回归模型,使得每个部分的关键点坐标能够被精确地识别和定位。
    step1:提取特征,将人体姿态的不同部位分别输入到不同的回归器中进行训练
    step2:将这些回归器按照人体姿态的部位顺序连接起来,形成人体姿态
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值